首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
Plasmid DNA (pDNA) is encapsulated into biocompatible microgels by an inverse microemulsion polymerization method. Plasmid DNA and doxorubicin are successfully released from pDNA microgels and their release profiles are characterized by appropriate release models. The co‐delivery of genes and drugs from the microgels is evaluated as an enhancer of clinical treatment. Moreover, the release of the encapsulated pDNA is capable of transfection in vitro resulting in the expression of p53 protein. As a whole, a novel pDNA‐based system is described that may find biomedical uses, especially in the cancer treatment through the combined action of chemotherapy and gene delivery approach.

  相似文献   


3.
4.
5.
Combined cancer treatment via co‐delivery of siRNAs and an anticancer drug can be a promising strategy due to the synergistic effect of simultaneously minimizing gene/drug administration. In this study, Bcl‐xL siRNA and doxorubicin (DOX) are encapsulated into designed methoxy‐poly(ethylene glycol)‐block‐poly(D ,L ‐lactic acid) (mPEG‐b‐PLA) block copolymer polymersomes (PSomes). A study of the cytotoxicity of Bcl‐xL siRNA and DOX co‐encapsulated PSomes (CPSomes) shows more inhibited proliferation of MKN‐45 and MKN‐28 human gastric cancer cell lines than only gene‐ and drug‐loaded ones. Consequently, these results demonstrate that co‐delivery of genes and drugs using PSomes results in a synergistic efficacy and indicates the potential of PSomes as efficient nanocarriers for combined cancer therapy.

  相似文献   


6.
7.
Affinity‐based drug delivery systems utilize interactions between the therapeutic drug and the delivery system to manipulate drug loading and to control drug release. In this paper, affinity‐based drug delivery system syntheses, types of therapeutic factors delivered, and delivery system loading and release are discussed in detail. The paper is divided into three subsections, based on the type of delivery system: molecular imprinting systems, growth‐factor delivery, and cyclodextrin‐based delivery. The objective of this paper is to examine the current state of research, highlight the breakthroughs and challenges, point out potential impacts of this relatively new technology, and explore future developmental areas.

  相似文献   


8.
Trackable spheres of similar size to those typically used for sustained protein delivery are prepared by incorporating superparamagnetic iron oxide (SPIO) nanoparticles into the core of poly(lactide‐co‐glycolide) microspheres. The visibility of injections in static and temporally in dynamic tissue systems is demonstrated. This method improves upon other, less sensitive imaging modalities in their ability to track injectable delivery systems. The results obtained confirm the localization of microspheres to the injected target area and highlight the novelty of tracking delivery vehicles for other applications.

  相似文献   


9.
A series of end‐functionalized poly(trimethylene carbonate) DNA carriers, characterized by low cationic charge density and pronounced hydrophobicity, is used to study structural effects on in vitro gene delivery. As the DNA‐binding moieties are identical in all polymer structures, the differences observed between the different polymers are directly related to the functionality and length of the polymer backbone. The transfection efficiency and cytotoxicity of the polymer/DNA complexes are thus found to be dependent on a combination of polymer charge density and functionality, highlighting the importance of such structural considerations in the development of materials for efficient gene delivery.

  相似文献   


10.
A biodegradable amphiphilic block copolymer, PEG‐b‐P(LA‐co‐MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA‐co‐MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.

  相似文献   


11.
12.
13.
14.
A cell specific peptide (Arg‐Gly‐Asp; RGD)‐modified nanogel was prepared and evaluated for its potential to act as a protein delivery carrier. A bovine serum albumin (BSA)/RGD‐modified nanogel complex was efficiently internalized into cells through integrin‐mediated endocytosis. Endosomal escape of the RGD‐modified nanogel was observed after 24 h incubation. The nanogel proved useful for targeted protein delivery.

  相似文献   


15.
16.
17.
18.
19.
20.
A novel PCD/CUR self‐assembly approach for improved curcumin delivery to prostate cancer cells is described. The formation of PCD/CUR was confirmed using FTIR, DSC, TGA, and SEM/TEM, and their stability and solubility under physiological conditions was demonstrated. A mechanism for self‐assembly is proposed. Intracellular uptake of the self‐assemblies was studied by flow cytometry and immunofluorescence microscopy. The therapeutic efficacy was determined by cell proliferation and colony formation assays using C4‐2, DU145 and PC3 prostate cancer cells. The results suggest that the PCD/CUR formulation could be a useful system for improving curcumin delivery and its therapeutic efficacy in prostate cancer.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号