首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We designed and synthesized sequence-specific alkylating conjugates 1 and 2, which selectively alkylate matched sequences at nanomolar concentrations. Conjugates 1 and 2 differ only in that the C-H is substituted by an N in the second ring, which precisely recognizes and effectively alkylates DNA according to the recognition rule of Py-Im polyamides. We investigated sequence-specific DNA alkylation, cytotoxicity in 39 human cancer cell lines, and the effect on expression levels in cancer cell lines by Py-Im conjugates 1 and 2. The COMPARE analysis of the mean graphs showed that conjugates 1 and 2 did not correlate well with each other (r = 0.65) despite having a common DNA alkylating mechanism (purine N3 alkylation). Array-based gene expression analysis demonstrated that there are several oppositely regulated genes. The results suggest the intriguing possibility that DNA alkylating agents recognizing longer base-pair sequences may provide a promising approach for developing new types of antigene agents.  相似文献   

2.
The recognition of cellular nucleic acids by synthetic oligonucleotides is a versatile strategy for regulating biological processes. The vast majority of published studies have focused on antisense oligonucleotides that target mRNA, but it is also possible to design antigene oligonucleotides that are complementary to chromosomal DNA. Antigene oligomers could be used to inhibit the expression of any gene or analyze promoter structure and the mechanisms governing gene regulation. Other potential applications of antigene oligomers include activation of expression of chosen genes or the introduction of mutations to correct genetic disease. Peptide nucleic acid (PNA) is a nonionic DNA/RNA mimic that possesses outstanding potential for recognition of duplex DNA. Here we describe properties of PNAs and the challenges for their development as robust antigene agents.  相似文献   

3.
Garner P  Dey S  Huang Y  Zhang X 《Organic letters》1999,1(3):403-405
[formula: see text] The synthesis and characterization of prototype alpha-helical peptide nucleic acid (alpha PNA) modules 1-3 as well as disulfide dimers 4 and 5 are reported. These molecules combine an alpha-helical peptidyl scaffold with well-defined nucleobase molecular recognition patterns and could serve as a basis for novel antisense and/or antigene agents. Structure assignments for these alpha PNAs were supported by MALDI-TOF mass spectrometry, and the alpha-helical nature of 4 in water was confirmed by circular dichroism (CD) spectroscopy.  相似文献   

4.
In the last decade, increased efforts have been directed toward the development of oligonucleotide-based technologies for genome analyses, diagnostics, or therapeutics. Among them, an antigene strategy is one promising technology to regulate gene expression in living cells. Stable triplex formation between the triplex-forming oligonucleotide (TFO) and the target double-stranded DNA (dsDNA) is fundamental to the antigene strategy. However, there are two major drawbacks in triplex formation by a natural TFO: low stability of the triplex and limitations of the target DNA sequence. To overcome these problems, we have developed various bridged nucleic acids (BNAs), and found that the 2',4'-BNA modification of oligonucleotides strongly promotes parallel motif triplex formation under physiological conditions. Some nucleobase analogues to extend the target DNA sequence were designed, synthesized, and introduced into the 2',4'-BNA structure. The obtained 2',4'-BNA derivatives with unnatural nucleobases effectively recognized a pyrimidine-purine interruption in the target dsDNA. Some other examples of nucleic acid analogues for stable triplex formation and extension of the target DNA sequence are also summarized.  相似文献   

5.
We designed and synthesized pyrrole (Py)-imidazole (Im) hairpin polyamide 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) conjugates 1 and 2, which target both strands of the double-stranded region of the human telomere repeat sequences, 5'-d(TTAGGG)(n)-3'/5'-d(CCCTAA)(n)-3'. High-resolution denaturing polyacrylamide gel electrophoresis demonstrated that conjugates 1 and 2 alkylated DNA at the 3' A of 5'-ACCCTA-3' and 5'-AGGGTTA-3', respectively. Cytotoxicities of conjugates 1 and 2 were evaluated using 39 human cancer cell lines; averages of log IC(50) values for conjugates 1 and 2 were -6.96 (110 nM) and -7.24 (57.5 nM), respectively. Conjugates 1 and 2 have potential as antitumor drugs capable of targeting telomere repeat sequence.  相似文献   

6.
A new class of fluorescent triazaborolopyridinium compounds was synthesized from hydrazones of 2-hydrazinylpyridine (HPY) and evaluated as potential dyes for live-cell imaging applications. The HPY dyes are small, their absorption/emission properties are tunable through variation of pyridyl or hydrazone substituents, and they offer favorable photophysical characteristics featuring large Stokes shifts and general insensitivity to solvent or pH. The stability, neutral charge, cell membrane permeability, and favorable relative influences on the water solubility of HPY conjugates are complementary to existing fluorescent dyes and offer advantages for the development of receptor-targeted small-molecule probes. This potential was assessed through the development of a new class of cysteine-derived HPY-conjugate imaging agents for the kinesin spindle protein (KSP) that is expressed in the cytoplasm during mitosis and is a promising chemotherapeutic target. Conjugates possessing the neutral HPY or charged Alexa Fluor dyes that function as potent, selective allosteric inhibitors of the KSP motor were compared using biochemical and cell-based phenotypic assays and live-cell imaging. These results demonstrate the effectiveness of the HPY dye moiety as a component of probes for an intracellular protein target and highlight the importance of dye structure in determining the pathway of cell entry and the overall performance of small-molecule conjugates as imaging agents.  相似文献   

7.
The multichain interleukin-2 receptor (IL-2R) has been proposed as a target for immunotherapy in the treatment of certain cancers including adult T-cell leukemia and cutaneous T-cell lymphoma as well as certain autoimmune diseases. The IL-2R is abnormally expressed on cells associated with each of these diseases; while normal, non-activated T-cells do not express the receptor. This report describes the selective photolysis of activated and non-activated IL-2R expressing cells using several immunoconjugates synthesized with one of two photosensitizers, hematoporphyrin (HP) or chlorin-e(6) (Ce(6)), covalently linked to IL-2 or an anti-IL-2R antibody. Destruction of IL-2R bearing cells was achieved after photosensitizer internalization and irradiation using all tested photosensitizer conjugates. Chlorin containing conjugates were more effective, by a factor of 4 or more, than HP containing conjugates. Conjugates made with IL-2 were up to 30 times more effective than conjugates that used a monoclonal antibody against the IL-2R for targeting. Activation of the cells to increase IL-2R expression decreased the internalization time required for optimal therapeutic efficacy; however, stimulation of the cell to increase IL-2 secretion greatly reduced conjugate effectiveness. This work could lead to the development of more effective strategies to treat T-cell diseases.  相似文献   

8.
Conjugates of polyhedral boron hydrides with deoxyadenosine were synthesized by the opening of cyclic oxonium derivatives of closo-dodecaborate and cobalt bis(1,2-dicarbollide) with 2′-deoxyadenosine derivatives containing a nucleophilic group in the substituent at C(8). Biological studies of the derivatives obtained for cytotoxicity revealed that the derivatives based on closo-dodecaborate did not exhibit cytotoxicity. The conjugates obtained can be used in further biological trials as potential agents for boron neutron capture therapy of cancer.  相似文献   

9.
A new series of porphyrin-cobaltacarborane conjugates (1-5) that contain four to sixteen carborane clusters per porphyrin macrocycle, were prepared in excellent yields (90-97 %) by means of a ring-opening reaction of the zwitterionic cobaltacarborane [3,3'-Co(8-C(4)H(8)O(2-)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))]. The X-ray structure of one conjugate (3) is presented. The aggregation properties of these conjugates were investigated by using absorption and fluorescence spectrophotometry, and the stages of microcrystal formation were captured by using atomic force microscopy. All conjugates were found to aggregate in aqueous solutions, to form a broad dispersity of particle sizes. The cellular uptake, cytotoxicity, and preferential sites of subcellular localization of this series of conjugates were evaluated in human carcinoma HEp2 cells. The extent of conjugate cellular uptake depends on the number of cobaltacarborane units at the porphyrin periphery, their distribution, and the conjugate aggregation behavior. Conjugates 2 and 4, bearing either two adjacent or three 3,5-dicobaltacarboranephenyl groups, accumulated the most within HEp2 cells and are, therefore, the most promising boron neutron capture therapy agents. All conjugates showed very low dark- and photo-toxicity, probably due to their strong tendency for aggregation in aqueous solutions, and localized subcellularly within vesicles that correlated, to some extent, with the cell lysosomes.  相似文献   

10.
A historical perspective of the development of spherical nucleic acid (SNA) conjugates and other three-dimensional nucleic acid nanostructures is provided. This Perspective details the synthetic methods for preparing them, followed by a discussion of their unique properties and theoretical and experimental models for understanding them. Important examples of technological advances made possible by their fundamental properties spanning the fields of chemistry, molecular diagnostics, gene regulation, medicine, and materials science are also presented.  相似文献   

11.
We have prepared new hyaluronan (HA) gadolinium diethylenetriaminepentaacetic acid (DTPA) conjugates that have potential as tumor specific contrast agents for magnetic resonance imaging. Conjugates were synthesized, starting with a high molecular weight HA or with HA oligomers, by an efficient 2-step procedure involving first, reaction of ethylenediamine with HA carboxylic acid groups and, second, covalent linkage of DTPA to aminated HA. The final polymers were compared in terms of molar masses and DTPA content. Tapping mode atomic force microscopy has been used to examine the morphology of the polymers in aqueous solution.  相似文献   

12.
Synthesis of lipid conjugates with galactose as a targeting ligand intended for the development of non-viral systems for the targeted delivery of nucleic acids into hepatocytes is described. 3,4-Diethoxycyclobut-3-ene-1,2-dione (diethyl squarate) was used to bind the galactose moiety to the lipid component.  相似文献   

13.
14.
Peptide nucleic acid (PNA) probes have been synthesized and targeted to quadruplex DNA. UV-vis and CD spectroscopy reveal that the quadruplex structure of the thrombin binding aptamer (TBA) is disrupted at 37 degrees C by a short PNA probe. The corresponding DNA probe fails to bind to the stable secondary structure at this temperature. Thermal denaturation experiments indicate surprisingly high thermal and thermodynamic stabilities for the PNA-TBA hybrid. Our results point to the nonbonded nucleobase overhangs on the DNA as being responsible for this stability. This "overhang effect" is found for two different PNA-DNA sequences and a variety of different overhang lengths and sequences. The stabilization offered by the overhangs assists the PNA in overcoming the stable secondary structure of the DNA target, an effect which may be significant in the targeting of biological nucleic acids, which will always be much longer than the PNA probe. The ability of PNA to invade a structured DNA target expands its potential utility as an antigene agent or hybridization probe.  相似文献   

15.
A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer’s disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure–activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced β-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.  相似文献   

16.
以促性腺激素释放激素类似物(GnRHa)为靶向配体, 以紫杉醇为抗癌因子, 分别以硫醚键和二硫键为连接臂, 设计合成了2个靶向抗肿瘤缀合物. 研究了缀合物的肿瘤细胞增殖抑制活性和GnRH受体结合活性, 结果表明, 2个缀合物均具有较强的抗肿瘤活性和GnRH受体亲和力; 另外, 血浆稳定性实验结果显示, 以硫醚键偶联的缀合物1在血浆中孵育24 h, 原型保留仍在50%以上, 具有较高的稳定性.  相似文献   

17.

New high-molecular-weight contrast agents based on polyamidoamine (PAMAM) dendrimers for targeted imaging of malignant tumors characterized by overexpression of human epidermal growth factor receptor (EGFR) and human alpha-fetoprotein receptor (RECAF) were designed. Conjugates of second (G2) and third (G3) generation polyamidoamine dendrimers with 1,4,7,10-tetraazocyclodecane-1,4,7,10-tetraacetic acid (DOTA) were obtained. The quantitative composition of the conjugates was determined by 1HNMR spectroscopy. It was shown that four out of the 16 terminal NH2 groups in G2-DOTA and nine out of the 32 groups in G3-DOTA were modified with DOTA. The morphology, size, and charge of the synthesized macromolecules were characterized by dynamic light scattering and electrophoresis. Gadolinium(III) was loaded into the conjugates and the Gd content was determined by atomic emission spectroscopy. For increasing the selectivity of accumulation in the tumor cells, two recombinant proteins able to bind selectively to EGFR and RECAF, namely, human recombinant epidermal growth factor (rEGF) and human recombinant 3rd domain of alpha-fetoprotein (3dAFPpG), were conjugated with G2 and G3 dendrimers. The conjugates containing vector molecules were mainly accumulated via clathrin-dependent endocytosis, whereas G2-DOTA and G3-DOTA were absorbed via caveolin-dependent endocytosis and macropinocytosis. The dendrimer conjugates with vector molecules were intensely accumulated in A549 cells characterized by high expression of EGFR (Herl) and RECAF, whereas the accumulation of conjugates in the control K562 cells (with low expression of Her1) and in the CD14? population of human unstimulated mononuclear white blood cells was insignificant. The 3dAFPpG-conjugated dendrimers were partly recycled. All synthesized conjugates had a rather low toxicity in the range of 350–450 µmol L?1 (IC50).

  相似文献   

18.
The site-specific modification of the 5"-terminal fragment of PGY1/MDR1 mRNA by oligodeoxyribonucleotide conjugates bearing residues of bleomycin A5 (Blm), cobalt(ii) tetracarboxyphthalocyanine (Phcn), 4-[N-(2-chloroethyl)-N-methylamino]benzylamine (RCl), or perfluoroarylazide (Az) was studied. Conjugates of oligonucleotides complementary to the RNA sequences 123—138 and 155—166 selectively modify RNA in the vicinity of these regions. The highest efficacy (up to 50%) was achieved in reactions with alkylating and perfluoroarylazide conjugates of oligonucleotides. Conjugates of perfluoroarylazide with 2"-O-modified oligonucleotides are much more efficient than analogous conjugates with oligodeoxyribonucleotides (extents of RNA modification are 40—50% and 20%, respectively).  相似文献   

19.
Mammalian cells resist the uptake of nucleic acids. The lipid bilayer of the plasma membrane presents one barrier. Here, we report on a second physicochemical barrier for uptake. To create a sensitive probe for nucleic acid-cell interactions, we synthesized fluorescent conjugates in which lipids are linked to DNA oligonucleotides. We found that these conjugates incorporate readily into the plasma membrane but are not retained there. Expulsion of lipid-oligonucleotide conjugates from the plasma membrane increases with oligonucleotide length. Conversely, the incorporation of conjugates increases markedly in cells that lack the major anionic components of the glycocalyx, sialic acid and glycosaminoglycans, and in cells that had incorporated highly cationic lipids into their plasma membrane. We conclude that anionic oligosaccharides provide a formidable barrier to the uptake of nucleic acids by mammalian cells. This conclusion has implications for genomic stability, as well as the delivery of genes and siRNAs into mammalian cells.  相似文献   

20.
Membrane lytic peptides (MLP) are widely explored as cellular delivery vehicles or antitumor/antibacterial agents. However, the poor selectivity between cancer and normal cells slims their prospects as potential anti-tumor drugs. Herein, we have developed a rationally designed self-assembly strategy to enhance tumor selectivity of MLP-based conjugates, incorporating a hydrophobic triphenylphosphonium (TPP) group for mitochondria targeting, and a hydrophilic arginine-glycine-aspartic acid (RGD) sequence targeting integrins. The self-assembly nanoparticles can enhance the stability of the peptides in vitro plasma and be endocytosed selectively into the cancer cells. The histidine-rich lytic peptide component assists the disruption of endosomal/lysosomal membranes and subsequent the mitochondria membrane, which leads to apoptosis. This rational design of MLP-based conjugates provides a practical strategy to increase the application prospects of lytic peptides in cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号