首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To study the surface‐adsorbate properties of ZnO nanowires, a hydrothermal method was modified to grow ZnO nanowires directly on ZnSe, which were then characterized by attenuated total reflection infrared (ATR‐IR) spectroscopy. To prepare ZnO nanowires directly on ATR sensing element of ZnSe, ZnO seed layers were first formed by annealing of ZnO seeds on ZnSe surfaces. The ZnO seed layers then were exposed to growth solution, forming ZnO nanowires directly on the ATR crystals. The interaction properties of the resulting surfaces were studied by an ATR‐IR method. The diameter, length and distribution of the ZnO nanowires can be tuned by adjusting the growth conditions, particularly the growing time and the concentrations of reagents. Two surfaces, namely Zn‐rich and Zn‐O ion‐pair surfaces were studied in detail for their adsorption properties toward compounds bearing different functional groups. By examination of several volatile organic compounds (VOCs), it was found that the Zn‐rich surface is less selective and interacts with compounds bearing the functional groups of amino and hydroxyl. The Zn‐O ion‐pair surface is more selective and a much stronger interaction was observed with non‐aromatic amino compounds. These results indicate that the improving of the selectivity of a ZnO‐based sensing device can be achieved by tuning the surface structure of the ZnO nanomaterials.  相似文献   

2.
ZnO nanowires with unusual growth directions, such as the approximate 102 and the 100 directions, were prepared by using the LiCl molten salt synthetic method. Intrinsic crystallographic structures and the growth directions of the as-prepared ZnO nanowires were investigated by using selected area electron diffraction and high-resolution transmission electron microscopy. In the present case, Li+ and Cl- ions of molten salts may bind with O2- and Zn2+ ions, respectively, of the {101} and {001} polar surfaces of the ZnO crystals, resulting in the decrease of their surface energies and tuning the growth directions by blocking the growth on the polar surfaces. A combination of the growth along the <102>, <100>, and <210> directions may lead to the formation of complex tree like ZnO dendrites. Strong green light emission was observed from room-temperature PL spectra of the as-prepared ZnO nanowires. This molten-salt synthetic process could be extended to synthesize other kinds of unusual 1D nanomaterials with specific crystal structures and properties.  相似文献   

3.
The article reports on the wetting properties of silicon-based materials as a function of their roughness and chemical composition. The investigated surfaces consist of hydrogen-terminated and chemically modified atomically flat crystalline silicon, porous silicon and silicon nanowires. The hydrogenated surfaces are functionalized with 1-octadecene or undecylenic acid under thermal conditions. The changes occurring upon surface functionalization are characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) spectroscopy and water contact angle measurements. By increasing the surface roughness, the static water contact angle increases. The combination of high surface roughness with chemical functionalization with water repellent coating (1-octadecene) enables reaching superhydrophobicity (water contact angle greater than 150°) for silicon nanowires.  相似文献   

4.
In the present work, superhydrophobic SiO2-coated ZnO nanorods have been successfully synthesized on glass surfaces via single-step hydrothermal route involving silicon hydroxide as silicon source, sodium dodecyl sulfate as surfactant and Zinc(II) acetate powder as Zinc source. The morphology and structure of obtained products were characterized by XRD, scanning electron microscopy, TEM, energy dispersive X-ray analysis, Pl and FTIR. The effect of calcination time on morphology and structure of as-synthesized products was evaluated. The obtained results exhibited that the synthesized nanorod-like product by calcining for 4 h showed excellent uniformity and quality. Furthermore, the water contact angel measurements were performed on as-synthesized products. The results showed due to introducing roughness by growth of SiO2 on ZnO nanorod-like structure, all the samples show excellent degree of hydrophobicity and introducing these products on glass surfaces makes the glass superhydrophobic.  相似文献   

5.
Synthesis and Characterization of ZnO Nanowires   总被引:1,自引:0,他引:1  
Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 ?C. Gold serves as a catalyst to capture Zn vapor during nanowire growth. Size control of ZnO nanowires has been achieved by varying the gold film thickness…  相似文献   

6.
Bunches of ZnO nanowires have been synthesized by hydrothermal process with the assistance of cetyltrimethylammonium bromide. The obtained bunches of ZnO nanowires are hexagonal wurtzite structures, and they exhibit orange visible emission ~600 nm. It seems the orange emission ~600 nm is due to the presence of Zn(OH)2 on the surface of ZnO nanowires. On the basis of material information provided by X-ray diffraction, scanning electron microscopy and photoluminescence, a growth mechanism is proposed for the formation of bunches of ZnO nanowires.  相似文献   

7.
采用高分子自组装ZnO纳米线及其形成机理   总被引:8,自引:3,他引:8  
介绍了一种能在各种晶面的硅衬底上制备垂直于衬底取向生长的ZnO纳米线阵列的新方法. 该法采用高分子络合和低温氧化烧结反应, 以聚乙烯醇(PVA)高分子材料作为自组装络合载体来控制晶体成核和生长. 首先通过PVA侧链上均匀分布的极性基团羟基(—OH)与锌盐溶液中的Zn2+离子发生络合作用, 然后滴加氨水调节络合溶液pH值为8.5±0.1, 使络离子Zn2+转变为Zn(OH)2, 再将硅片浸入此溶液中, 从而在硅衬底表面得到较均匀的Zn(OH)2纳米点, 随后在125 ℃左右Zn(OH)2纳米点通过热分解转化为ZnO纳米点, 其后在420 ℃烧结过程中衬底上的ZnO纳米点在PVA高分子网络骨架对其直径的限域下逐渐取向生长成ZnO纳米线, 并且烧结初期PVA碳化形成的碳通过碳热还原ZnO为Zn, 再在氧气氛中氧化为ZnO的方式在纳米线顶端形成了催化活性点, 促进了纳米线顶端ZnO的吸收. 烧结后碳逐渐氧化被完全去除. 采用场发射扫描电镜(FE-SEM)、透射电镜(TEM, HR-TEM)和X射线衍射(XRD)对纳米线的分析结果表明, ZnO纳米线在硅衬底上分布均匀, 具有六方纤锌矿结构, 并且大多沿[0001]方向择优取向生长, 直径为20~80 nm, 长度可从0.5至几微米. 提出了聚合物控制ZnO结晶和形貌的网络骨架限域模型以解释纳米线的生长行为.  相似文献   

8.
The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.  相似文献   

9.
Kim TG  Park B 《Inorganic chemistry》2005,44(26):9895-9901
Strontium hydroxyapatite (SrHAp) nanowires with an aspect ratio of several hundreds were synthesized by controlling the growth conditions during a hydrothermal process. In the strontium phosphate system, it was found that the phase evolution changed with pH and that the aspect ratio of SrHAp was affected by the phases present before heating. Since the conditions for SrHAp nucleation prohibits one-dimensional growth, it was impossible to grow large-scale SrHAp nanowires using routine hydrothermal methods. Through thermodynamic considerations, the mechanisms of nanowire formation appear to involve the rapid release of the stored chemical potential in a metastable phase, which promotes the anisotropic growth of the most stable SrHAp nanostructures. Thereby, the conditions for both the nucleation of the SrHAp phase and the anisotropic growth were determined simultaneously, and considerable quantities of SrHAp nanowires were synthesized.  相似文献   

10.
We have fabricated a range of silicon post surfaces where post width and spacing have been systematically varied. As one subset, we have generated surfaces where the post spacings in x and y assume different values. On these surfaces, the dynamic contact angles become anisotropic. A fluoropolymer monolayer is photochemically attached to the microstructured silicon, leading to the appearance of ultrahydrophobic properties. On one side, the advancing contact angles on these surfaces are not affected by variations in the geometric parameters. This furthers the conclusion that, during the advancing motion, a true contact angle of 180 degrees is reached. On the other side, the receding angles are strongly influenced by the post size and spacing. We quantitatively analyze this dependence and relate variations in the receding angle to the shape and movement of the three-phase contact line. It is suggested that during the receding motion the meniscus successively dewets from one post at a time, with a step function running along the contact line until it has receded from a row of posts over its entire length.  相似文献   

11.
Template two step electrodeposition method and atomic layer deposition were used to synthesize copper nanowires of varied length (1.2 to 26.2 μm) and copper nanowires coated with titanium dioxide. As a result of the atomic layer deposition of TiO2, coated nanowires demonstrated an up to 10-fold decrease in the wetting angle, compared with uncoated nanowires. It was found the dissipation rate is substantially higher for nanowires coated by the atomic layer deposition method (100 s) as compared with the uncoated copper nanowires (400 s), which assumes the positive properties of water propagation along the surface, necessary for improving the heat transfer. It was also found that the water contact angle for uncoated nanowires and those coated with TiO2 by the atomic layer deposition (ALD) gradually increases as the samples are kept in air. A gradual increase in wettability was also observed for smooth silicon wafers coated by ALD of TiO2, which were exposed to air. On the coated silicon substrates, the wetting angle gradually increased from 10° to approximately 56° in the course of four days. In addition, it was shown that copper nanowires coated with TiO2 by the atomic layer deposition method have an excellent corrosion resistance, compared with uncoated nanowires, when brought in contact with air and water.  相似文献   

12.
Wettability and its distribution are crucial factors that indicate the surface conditions of substrates. We report a surface study of sintered alumina substrates using solution‐processed ZnO nanorods as a microscopic wettability indicator. The alumina substrates comprising of micrometer‐sized sintered grains were treated separately with ultraviolet/ozone (dry process) or ozone water (wet process), and their surface conditions were characterized by conventional surface analysis methods, such as water contact angle, X‐ray photoelectron spectroscopy and grazing angle attenuated total reflection Fourier transform infrared spectroscopy. The results showed that the alumina substrates treated with ultraviolet/ozone and ozone water had distinct clean surfaces compared to those without treatments, but no significant differences were noted between these two ozone‐based treatments. Then, as a wettability‐sensitive deposition technique, Pd‐catalyzed chemical deposition of ZnO nanorods was performed on the alumina substrates, which involved dip coating of Pd nanoparticles on the substrates in aqueous solutions, followed by the chemical solution growth of ZnO. Vertically aligned ZnO nanorods of ~85 nm in diameter were densely formed along a rough surface of the substrates. Morphological uniformity of the nanorods varied depending on the treatment condition; local surfaces with sufficient wettability provided uniform nanorods but those with insufficient wettability gave irregular nanorods, making the visualization of the microscopic surface wettability possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we investigate the roles of gold catalyst using modified thermal evaporation set-up in the growth process of ZnMgO nanowires. ZnMgO nanowires are fabricated on silicon substrates using different thickness of gold catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursors, based on Fick’s first law, is used to grow the ZnMgO nanowires. Field emission scanning electron microscopy images show that the ZnMgO nanowires are tapered. The optical properties of the ZnMgO nanowires are characterized by room temperature photoluminescence (PL) measurements. The PL studies demonstrate that the ZnMgO nanowires grown using this method have good crystallinity with excellent optical properties and have a larger band-gap in comparison to the pure ZnO nanowires. Field emission characterization shows that the turn-on field for the nanowires grown on the thinner gold film is lower than those grown on the thicker gold film.  相似文献   

14.
We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.  相似文献   

15.
Control over the wettability of an aligned carbon nanotube film   总被引:7,自引:0,他引:7  
Three-dimensional anisotropic aligned carbon nanotube microstructures were constructed by the chemical vapor deposition method on silicon templates with well-defined structure. It brought about new properties of wettability. Superhydrophobic (contact angle > 150 degrees ) and very hydrophilic (contact angle < 30 degrees ) properties can both be achieved by a simple change of structural parameter.  相似文献   

16.
We report an approach for growing aligned ZnO nanowire arrays with a high degree control over size, orientation, dimensionality, uniformity, and possibly shape. Our method combines e-beam lithography and a low temperature hydrothermal method to achieve patterned and aligned growth of ZnO NWs at <100degreesC on general inorganic substrates, such as Si and GaN, without using catalyst. This approach opens up the possibility of applying ZnO nanowires as sensor arrays, piezoelectric antenna arrays, two-dimensional photonic crystals, IC interconnects, and nanogenerators.  相似文献   

17.
氧化锌纳米线自组装定向生长动力学研究   总被引:1,自引:0,他引:1  
贺英  王均安  桑文斌  高利聪  周利寅 《化学学报》2007,65(12):1155-1160
研究了以极性高分子(如聚丙烯酰胺)长分子链作为自组装网络, 利用高分子软模板控制ZnO纳米点成核和ZnO纳米线定向生长, 从而使ZnO纳米线在半导体硅衬底上自组装生长的过程; 采用差示扫描量热法(DSC)测试了高分子络合-烧结法制备ZnO纳米线的结晶曲线, 对其结晶动力学进行了研究, 推导出结晶动力学方程为: 1-Xt=exp(-7.475×10-2t1.9); 并利用热重(TG)测试结果, 通过热分解反应, 导出了反应动力学方程: dα/dT=(3.76×1023/Φ)e-21340.8/T(1-α) 2.8, 从而得到了化学反应速度随时间、浓度和温度变化的关系, 并用结果解释了实验现象.  相似文献   

18.
Almost vertically aligned ZnO nanowires have been grown on Silicon substrates via a simple hydrothermal method. In order to improve the photoelectric conversion efficiency for fabricated dye-sensitized solar cells (DSSCs), an easily-operated immersing method was employed to fabricate a TiO2/ZnO nanowires array heterojunction, which has advantage of high aspect ratio, low recombination rate and high absorption of visible light. The structure and surface morphology of the samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The photovoltaic properties of TiO2/ZnO based DSCCs were measured by considering the power efficiency (η), photocurrent density (Jsc), open-circuit voltage (Voc), and fill factor (FF). An efficiency of 0.559% is achieved for the composite cell, increasing 0.426 and 0.185% for the ZnO nanowires cell and TiO2 cell, respectively. The short-circuit current and open-circuit voltage are also enhancing. The improvements are because of high surface are of TiO2 shell layer, as well as fast electron transport and light scattering effect of ZnO nanowires.  相似文献   

19.
Pure and Co-doped ZnO nanowire arrays were grown on polished silicon substrates with high rates via an electrochemical technique. A negative potential applied to the substrate not only enhances the nucleation density on polished substrates more than 4 orders of magnitude but also increases the growth rate by 35 times over that obtained in the absence of the potential. Furthermore, incorporation of metallic dopants in ZnO nanowires was demonstrated in the low-temperature process. This fast growth technique provides a route to fabrication of low-cost highly oriented ZnO nanowires on polished substrate for industrial applications.  相似文献   

20.
表面修饰引发的ZnO纳米棒阵列膜的超疏水性   总被引:7,自引:0,他引:7  
润湿性是固体表面的重要性质之一 ,它受控于固体表面自由能和表面粗糙度的大小 ,一般可用液体在固体表面接触角的大小来衡量 .由于水与超疏水表面 (水与固体表面的接触角大于 1 5 0°的表面 )的接触面积很小 ,通过水所发生的化学发应和化学键的形成受到限制 ,使这种表面具有防水、防污染和防氧化等多种功能 ,因而备受人们的关注 [1~ 6 ] .作为宽禁带半导体材料 ,Zn O以其独特的光电和催化等性质在短波激光器、气体传感器、高效催化剂、太阳能电池等方面具有广阔的应用前景 .表面润湿性的研究对于将 Zn O用于各种器件非常重要 .Pesika等 […  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号