首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atkinson DB 《The Analyst》2003,128(2):117-125
Cavity ring-down (CRD) is a sensitive variant of traditional absorption spectroscopy that has found increasing use in a number of chemical measurement applications. This review focuses on applications of cavity ring-down spectroscopy that will be of interest to environmental chemists and analytical chemists working on environmental problems. The applications are classified into direct monitoring approaches, indirect analysis methods and ancillary studies and a differentiation is made between field-tested instruments and proof of principle studies.  相似文献   

2.
Methane (CH4) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.  相似文献   

3.
Polarization-selective optical heterodyne detection is shown to enhance the practical sensitivity of cavity ring-down spectroscopy. Initial experiments demonstrate a signal-to-noise ratio above 31 dB. Minor improvements should yield shot-noise-limited operation.  相似文献   

4.
Cavity ring-down spectroscopy was used to study the reaction of ClOO with NO in 50-150 Torr total pressure of O2/N2 diluent at 205-243 K. A value of k(ClOO+NO) = (4.5 +/- 0.9) x 10(-11) cm3 molecule(-1) s(-1) at 213 K was determined (quoted uncertainties are two standard deviations). The yield of NO(2) in the ClOO + NO reaction was 0.18 +/- 0.02 at 213 K and 0.15 +/- 0.02 at 223 K. An upper limit of k(ClOO+Cl2) < 3.5 x 10(-14) cm3 molecule(-1) s(-1) was established at 213 K. Results are discussed with respect to the atmospheric chemistry of ClOO and other peroxy radicals.  相似文献   

5.
Cavity ring-down spectroscopy (CRDS) has been applied to the detection of oxygen atoms, on the highly forbidden 1D2 ← 3P2 line at 630.030 nm. Results are presented for CRDS detection in a discharge flow system, in which the atoms are prepared by a microwave discharge of N2O/Ar or O2. Comparison of concentrations determined by CRDS and chemical titration by NO2 is made. CRDS is found to be a non-intrusive technique for the determination of oxygen atom concentrations in the range of 1014 atoms cm−3 and higher, with an estimated accuracy of 20%.  相似文献   

6.
Cavity ring-down detection techniques can sensitively determine frequency-dependent absorption cross-sections of gasses. However, so-called line-width problems and amplified spontaneous emission of the laser light source lowers the technique’s quantitative accuracy. Using phase-shift cavity ring-down spectroscopy (PSCRD), we measured absolute line intensities of the spin-forbidden transitions in the band of molecular oxygen. Our results were within 4% of values obtained from the HITRAN database, demonstrating the accuracy of PSCRD, when corrected for amplified spontaneous emission. Its high sensitivity (2 × 10−8 cm−1), simplicity and high duty cycle make PSCRD a powerful diagnostic technique.  相似文献   

7.
Current phase-shift cavity ring-down spectroscopy (PS-CRDS) experiments make use of equations originally developed for fluorescence studies. As these equations fail to take the length of the optical cavity and the superposition of reflecting beams into account, they lose validity as the length of the cavity increases. A new set of equations, based solely on the principles of PS-CRDS, is developed for determining the ring-down time from either the phase shift or the intensity of the waveform exiting the cavity. It is shown that the PS-CRDS equations reduce to those developed for fluorescence study for short cavities. The new equations provide a more accurate method in determining the characteristic ring-down time and phase shift for long cavities, especially fiber optic cavities, which is promising in on-site chemical sensing.  相似文献   

8.
9.
The averaged transmitted intensity of a cavity excited by a linearly frequency swept laser with finite line width is derived and presented as a sum over passes, analytical integrals (where the sum of passes is converted to a continuous time variable), and an approximate but computationally more stable stationary phase approximation expression. The transmitted waveform is used to derive the bias in extraction of the cavity decay rate from such a cavity transient for three different fitting models. Numerical simulation of cavity excitation gives statistical fluctuations in the transmitted intensity that leads to noise in the cavity decay rate. For a range of parameters spanning those likely to be encountered in real experiments, numerical results are presented. These demonstrate that the theoretical signal-to-noise ratio and thus sensitivity of swept cavity (or equivalently, frequency) CRDS is substantially below that for CRDS where one attenuates the laser either with current modulation or with an external modulator.  相似文献   

10.
Cavity ring-down spectroscopy using a fiber-coupled continuous wave distributed feedback laser at a wavelength of 1520 nm has been used to measure extinction of light by samples of nearly monodisperse aerosol particles <1 μm in diameter. A model is tested for the analysis of the sample extinction that is based on the Poisson statistics of the number of particles within the intracavity laser beam: variances of measured extinction are used to derive values of the scattering cross section for size-selected aerosol particles, without need for knowledge of the particle number density or sample length. Experimental parameters that influence the performance of the CRD system and the application and limitations of the statistical model are examined in detail. Determinations are reported of the scattering cross sections for polystyrene spheres (PSSs), sodium chloride, and ammonium sulfate, and, for particles greater than 500 nm in diameter, are shown to be in agreement with the corresponding values calculated using Mie theory or Discrete Dipole Approximation methods. For smaller particles, the experimentally derived values of the scattering cross section are larger than the theoretical predictions, and transmission of a small fraction of larger particles into the cavity is argued to be responsible for this discrepancy. The effects of cubic structure on the determination of optical extinction efficiencies of sodium chloride aerosol particles are examined. Values are reported for the real components of the refractive indices at 1520 nm of PSS, sodium chloride, and ammonium sulfate aerosol particles.  相似文献   

11.
Evanescent-wave cavity ring-down spectroscopy was used to monitor the adsorption of human hemoglobin to a fused-silica surface from aqueous solution. An uncoated dove prism was situated in a ring-down cavity such that the beam entered and exited with a normal-incidence geometry. This afforded ring-down times as high as 5 mus and values of sigma(tau)/tau as low as 0.3%. Normal-incidence geometry permits the detection of both S- and P-polarized light, yielding some information of the orientation of adsorbates. The orientation of the adsorbed hemoglobin molecules is found to change as adsorption progresses, but with a different time profile than adsorption itself. The adsorption kinetics from a quiescent solution is consistent with a reaction-diffusion model that includes both reversible and irreversible adsorption operating in parallel. Systems behaving according to this model also seem to display adsorption isotherms, although the increased adsorption from more concentrated solutions is only a consequence of the system being under kinetic control. In some cases, this may be sufficient to explain the paradox of protein adsorption systems which seem to be both irreversible and consistent with isotherm models as well.  相似文献   

12.
Cavity ring-down spectroscopy with an off-axis multipass cell and space separated detectors is proposed to record absorption spectra without modulation of the diode laser intensity. The spectral resolution is approximately 0.0003 cm-1. The whole spectrum is obtained for one continuous tuning of the laser frequency for approximately 20 ms. When comparing this method to conventional CRDS the required rise time is 1000 times slower. The recording of the whole spectrum for one measurement gives additional possibilities of signal extraction at relatively high noise. The technique is applied to absorption measurement of NO2 in atmosphere.  相似文献   

13.
We report the absolute absorption cross sections of the fourth vibrational O-H (5ν(OH)) overtone in acetic acid using cavity ring-down spectroscopy. For compounds that undergo photodissociation via overtone excitation, such intensity information is required to calculate atmospheric photolysis rates. The fourth vibrational overtone of acetic acid is insufficiently energetic to effect dissociation, but measurement of its cross section provides a model for other overtone transitions that can affect atmospheric photochemistry. Though gas-phase acetic acid exists in equilibrium with its dimer, this work shows that only the monomeric species contributes to the acetic acid overtone spectrum. The absorption of acetic acid monomer peaks at ~615 nm and has a peak cross section of 1.84 × 10(-24) cm(2)·molecule(-1). Between 612 and 620 nm, the integrated cross section for the acetic acid monomer is (5.23 ± 0.73) × 10(-24) cm(2)·nm·molecule(-1) or (1.38 ± 0.19) × 10(-22) cm(2)·molecule(-1)·cm(-1). This is commensurate with the integrated cross section values for the fourth O-H overtone of other species. Theoretical calculations show that there is sufficient energy for hydrogen to transition between the two oxygen atoms, which results in an overtone-induced conformational change.  相似文献   

14.
The cavity ring-down technique is used to probe the absolute optical response of the localized surface plasmon resonance (SPR) of a gold nanoparticle distribution to adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) from the gas phase. Extended Mie theory for a coated sphere with a particle-size-dependent dielectric function is used to elucidate size-dispersion effects, the size-dependence of the SPR sensitivity to adsorption, and the kinetics of adsorption. An approximate Gaussian distribution of nanospheres with a mean diameter of 4.5 nm and a standard deviation of 1.1 nm, as determined by atomic force microscopy, is provided by the intrinsic granularity of an ultrathin, gold film, having a nominal thickness of approximately 0.18 nm. The cavity ring-down measurements employ a linear resonator with an intracavity flow cell, which is formed by a pair of ultrasmooth, fused-silica optical flats at Brewster's angle, where the Au film is present on a single flat. The total system intrinsic loss is dominated by the film extinction, while the angled flats alone contribute only approximately 5 x 10(-5)/flat to the total loss. Based on a relative ring-down time precision of 0.1% for ensembles averages of 25 laser shots from a pulsed optical parametric oscillator, the minimum detectable concentrations of PCE and TCE obtained by probing the SPR response are found to be 2 and 7 x 10(-8) mol/L, respectively, based on a 30 s integration time.  相似文献   

15.
Using evanescent-wave cavity ring-down spectroscopy (EW-CRDS), we monitored the change in the absorbance of a thin film of methylene blue (MB) at an air/fused-silica interface while varying the polarization of the incident light (600 nm). We derived the average orientation angle of the planar MB molecules with respect to the surface normal and observed that the average orientation angle decreases as the surface concentration increases. At low surface concentrations, the MB molecules lie almost flat on the surface, whereas at higher surface concentrations the molecules become vertically oriented.  相似文献   

16.
Initial spectral results are reported from a newly constructed cavity ringdown spectrometer. The apparatus incorporates a slit-jet expansion, with or without a discharge, to produce cold sample molecules. High spectral resolution in both the near- and mid-IR is obtained by using stimulated Raman scattering of the pulsed amplified output of a cw Ti:Sa ring laser. Molecular spectra presented include the electronic near-IR transitions a (1)Delta(g)(-)<-- X (3)Sigma(g)(-) of O(2) and B (3)Pi(g)<-- A (3)Sigma(u)(+) of metastable N(2) and vibrational overtones of H(2)O (polyad 2) and the OH radical. Fundamental vibrational transitions of CH(3) (nu(3)) in the mid-IR are also observed. This apparatus has demonstrated the potential for obtaining high-resolution spectra of both reactive and non-reactive species throughout the entire IR region.  相似文献   

17.
The reactions of Cl atoms with RI (R = n-C3H7, n-C4H9, cyclo-C6H11, C6H5, C6F5, and p-CH3C6H4) have been studied using cavity ring-down spectroscopy at a temperature range of 233-313 K and at 100 Torr total pressure of N2 diluent. Visible absorption spectra of the RI-Cl adducts were recorded at 440-520 nm at 263 K. The yields of the adducts were temperature-dependent. There was no discernible reaction of the adducts in the presence of 100 Torr of O2 at 263 K. Theoretical calculations were performed for C4H9I-Cl and C6H5I-Cl for quantitative explanation of the absorption spectra and the strength of the I-Cl bonds in the charge-transfer complexes. Evidence for the adduct formation following the reaction of Cl with C6H5Br was sought but not found at 440 and 520 nm.  相似文献   

18.
Elimination of molecular bromine is probed in the B (3)Pi(ou) (+)<--X (1)Sigma(g) (+) transition following photodissociation of CHBr(2)Cl at 248 nm by using cavity ring-down absorption spectroscopy. The quantum yield for the Br(2) elimination reaction is determined to be 0.05+/-0.03. The nascent vibrational population ratio of Br(2)(v=1)Br(2)(v=0) is obtained to be 0.5+/-0.2. A supersonic beam of CHBr(2)Cl is similarly photofragmented and the resulting Br atoms are monitored with a velocity map ion-imaging detection, yielding spatial anisotropy parameters of 1.5 and 1.1 with photolyzing wavelengths of 234 and 267 nm, respectively. The results justify that the excited state promoted by 248 nm should have an A(") symmetry. Nevertheless, when CHBr(2)Cl is prepared in a supersonic molecular beam under a cold temperature, photofragmentation gives no Br(2) detectable in a time-of-flight mass spectrometer. A plausible pathway via internal conversion is proposed with the aid of ab initio potential energy calculations. Temperature dependence measurements lend support to the proposed pathway. The production rates of Br(2) between CHBr(2)Cl and CH(2)Br(2) are also compared to examine the chlorine-substituted effect.  相似文献   

19.
Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号