首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperpolarized (129)Xe NMR spectroscopy is used to establish the solid-state porosity of shape-persistent macrocycles with either an organic or metal-organic framework. These studies show that even upon removal of cocrystallized solvent molecules, the macrocycles maintain a porous or channeled structure. The technique can provide valuable information about systems for which X-ray crystallographic analysis is not feasible. [structure: see text]  相似文献   

2.
In this contribution, we demonstrate that a material (organic zeolite mimetic coordination polymer [CuL(2)], where L = L(-) = CF(3)COCHCOC(OCH(3))(CH(3))(2)) can be endowed with its functionality in situ under molecular-level control. This process involves the isomerization of the ligands followed by phase interconversion from a dense to an open, porous form. The porous (beta) form of the complex reveals zeolite-like behavior but, unlike zeolites and many other hard porous frameworks, porosity may be created or destroyed at will by the application of suitable external stimuli. Contact with methylene chloride vapor was used to switch on the sorbent functionality, whereas switching off was accomplished with a temperature pulse. The transformations between functionally inactive alpha and active beta forms, as well as the amount of vacant pore space, were monitored in situ by observing the NMR spectrum of hyperpolarized (HP) Xe atom probes. For methylene chloride, the chemical shift of the coabsorbed HP Xe correlated directly with the amount of adsorbate in the pore system of the open framework, illustrating the use of HP Xe for following sorption kinetics. The adsorption of propane, as an inert adsorbate, was also monitored directly with (1)H NMR, with HP Xe and by BET measurements, revealing more complex behavior.  相似文献   

3.
4.
129Xe NMR measurements of adsorbed xenon are shown for the first time to be a suitable tool to characterize the porosity and the properties of the metal-organic framework Cu3(BTC)2(H2O)3 (BTC = benzene 1,3,5-tricarboxylate). The NMR experiments are performed at room temperature and over a wide range of xenon pressure and on two different synthesized Cu3(BTC)2 samples. 129Xe NMR results reveal that in dependence on the kind of the synthesis pathway either one or two signals are observed which can be attributed to two kinds of fast exchange of xenon atoms in two pores with different pore sizes. Coadsorption experiments of xenon and ethylene demonstrate that the xenon atoms prefer to fill the greater pores of the material because the smaller pores are occupied with residual molecules from the synthesis procedure and additionally adsorbed ethylene. Besides the NMR experiments a series of electron paramagnetic resonance (EPR) measurements are performed to estimate the state of copper having a strong influence on the chemical shift of the adsorbed xenon. The EPR experiments demonstrate that spin exchange between the interconnected copper dimers is taking place across the BTC linker molecules in the Cu3(BTC)2 framework.  相似文献   

5.
6.
Results of the first solid-state 131Xe NMR study of xenon-containing compounds are presented. The two NMR-active isotopes of xenon, 129Xe (I=1/2) and 131Xe (I=3/2), are exploited to characterize the xenon magnetic shielding and quadrupolar interactions for two sodium perxenate salts, Na4XeO6.xH2O (x=0, 2), at an applied magnetic field strength of 11.75 T. Solid-state 129/131Xe NMR line shapes indicate that the local xenon environment in anhydrous Na4XeO6 adopts octahedral symmetry, but upon hydration, the XeO6(4-) anion becomes noticeably distorted from octahedral symmetry. For stationary, anhydrous samples of Na4XeO6, the heteronuclear 129/131Xe-23Na dipolar interaction is the principal contributor to the breadth of the 129/131Xe NMR lines. For stationary and slow magic-angle-spinning samples of Na4XeO(6).2H2O, the anisotropic xenon shielding interaction dominates the 129Xe NMR line shape, whereas the 131Xe NMR line shape is completely dominated by the nuclear quadrupolar interaction. The xenon shielding tensor is approximately axially symmetric, with a skew of -0.7+/-0.3, an isotropic xenon chemical shift of -725.6+/-1.0 ppm, and a span of 95+/-5 ppm. The 131Xe quadrupolar coupling constant, 10.8+/-0.5 MHz, is large for a nucleus at a site of approximate Oh symmetry, and the quadrupolar asymmetry parameter indicates a lack of axial symmetry. This study demonstrates the extreme sensitivity of the 131Xe nuclear quadrupolar interaction to changes in the local xenon environment.  相似文献   

7.
8.
The host and the apohost framework of [Zn2(1,4-bdc)2(dabco)]?·?4DMF?·?½H2O (1?·?4DMF?·?½H2O) (1,4-bdc?=?1,4-benzenedicarboxylate and dabco?=?1,4-diazabicyclo[2.2.2]octane) were used for the preparation of ZnO nanomaterials. With calcination of the host framework of 1?·?4DMF?·?½H2O, ZnO nanoparticles could be fabricated. By the same process on fully desolvated framework of 1, ZnO microrods composed of ZnO nanoparticles were formed. These results indicate with removal of the guest solvent from the pores of this metal-organic framework (MOF), nanoparticle agglomeration increases and the role of this MOF in preparation of ZnO nanoparticles was reduced.  相似文献   

9.
10.
The 129Xe NMR line shapes of xenon adsorbed in the nanochannels of the (+/-)-[Co(en)3]Cl3 ionic crystal have been calculated by grand canonical Monte Carlo (GCMC) simulations. The results of our GCMC simulations illustrate their utility in predicting 129Xe NMR chemical shifts in systems containing a transition metal. In particular, the nanochannels of (+/-)-[Co(en)3]Cl3 provide a simple, yet interesting, model system that serves as a building block toward understanding xenon chemical shifts in more complex porous materials containing transition metals. Using only the Xe-C and Xe-H potentials and shielding response functions derived from the Xe@CH4 van der Waals complex to model the interior of the channel, the GCMC simulations correctly predict the 129Xe NMR line shapes observed experimentally (Ueda, T.; Eguchi, T.; Nakamura, N.; Wasylishen, R. E. J. Phys. Chem. B 2003, 107, 180-185). At low xenon loading, the simulated 129Xe NMR line shape is axially symmetric with chemical-shift tensor components delta(parallel) = 379 ppm and delta(perpendicular) = 274 ppm. Although the simulated isotropic chemical shift, delta(iso) = 309 ppm, is overestimated, the anisotropy of the chemical-shift tensor is correctly predicted. The simulations provide an explanation for the observed trend in the 129Xe NMR line shapes as a function of the overhead xenon pressure: delta(perpendicular) increased from 274 to 292 ppm, while delta(parallel) changed by only 3 ppm over the entire xenon loading range. The overestimation of the isotropic chemical shifts is explained based upon the results of quantum mechanical 129Xe shielding calculations of xenon interacting with an isolated (+/-)-[Co(en)3]Cl3 molecule. The xenon chemical shift is shown to be reduced by about 12% going from the Xe@[Co(en)3]Cl3 van der Waals complex to the Xe@C2H6 fragment.  相似文献   

11.
In the present study, a hydrothermal method was developed to prepare nalidixic acid-loaded [Zn2(bdc)2(dabco)] metal–organic frameworks. The self-assembly of primary building blocks was used for synthesis of [Zn2(bdc)2(dabco)] at room temperature. The zinc metal ion was used as a connector, 1,4-benzenedicarboxylate (bdc) as a chelating ligand, and 1,4-diazabicyclo[2.2.2]octane (dabco) as a bridging ligand. The metal organic frameworks were used as the carriers for drug delivery system, where it could entrap nalidixic acid as a model drug. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV–vis), BET nitrogen adsorption–desorption method, and scanning electron microscopy (SEM) were used for characterization of samples. The drug release was also monitored, and 96 and 62% of the loaded drug were released over 120 h at pH values of 5.0 and 7.4, respectively. The antimicrobial activities of [Zn2(bdc)2(dabco)] and nalidixic acid-loaded [Zn2(bdc)2(dabco)] were tested against Gram-positive and Gram-negative species. The results revealed that this nanoscale metal organic framework may be regarded as a simple and stable platform for drug release in the treatment of infectious diseases.  相似文献   

12.
The microporous metal-organic framework Ni(2)(dhtp) (H(4)dhtp=2,5-dihydroxyterephthalic acid) shows distinct end-on CO(2) coordination to coordinatively unsaturated nickel sites giving rise to high CO(2) adsorption capacity at sub-atmospheric pressures and ambient temperatures.  相似文献   

13.
The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents.  相似文献   

14.
Grand Canonical Monte Carlo simulations have explained the breathing of a metal-organic framework upon CO(2) adsorption, first suggested by microcalorimetry.  相似文献   

15.
Hyperpolarized (129)Xe (xenon) gas dissolved in a perfluorooctyl bromide (PFOB) emulsion stabilized with egg yolk phospholipid (EYP) is a possible contrast agent for quantitative blood flow measurements using magnetic resonance imaging. The NMR line shape of xenon dissolved in PFOB emulsion depends strongly on the exchange of spins between PFOB and water. The exchange in this system depends on three factors: the geometrical factors (i.e., droplet size and surrounding water volume), the permeability of the EYP monolayer surrounding the droplet, and the diffusion coefficients of xenon in the two media. A theoretical model which predicts the line shape of xenon in the emulsion based on the Bloch-Torrey equations is presented. Fitting the full width at half maximum (FWHM) of the theoretical line shapes with the FWHM of the experimental spectra obtained from emulsions with different water dilutions allows estimation of the volume-weighted average diameter of the PFOB droplets (3.5+/-0.8) microm and the permeability of the EYP membrane surrounding the droplet (58+/-14) microm / s.  相似文献   

16.
Complexes of cadmium(II)-selenocyanate with several alkyldiamine ligands have been synthesized and characterized by IR, 113Cd, 77Se, 15N and 13C NMR spectroscopy. The X-ray structure of the complex [Cd(SeCN)2-en] reveals two non-equivalent metal ion centers, both with a distorted octahedral geometry. The combined bridging modes of selenocyanate and ethylenediamine with the blocking mode of a chelating ethylenediamine generate a 2D metal-organic framework.  相似文献   

17.
18.
Reaction of Co(CF3SO3)2 with the new molecule 1,4-benzenedi(4'-pyrazolyl) (H2BDP) in N,N'-diethylformamide (DEF) at 130 degrees C generates the metal-organic framework Co(BDP).2DEF.H2O (1). X-ray analysis reveals the structure of 1 to contain chains of tetrahedrally ligated Co2+ ions linked through BDP2- ligands to generate a three-dimensional framework with 10 x 10 A2 channels. Thermogravimetric data shows the framework to have a high thermal stability, and complete desolvation occurs upon heating at 170 degrees C under dynamic vacuum for two days to afford 1d. X-ray powder diffraction data indicates that 1d possesses a substantially different structure, but converts back to 1 upon exposure to DEF, consistent with the presence of a flexible framework. Nitrogen adsorption isotherms measured for 1d at 77 and 87 K reveal an unprecedented five-step adsorption process and a Langmuir surface area of 2670 m2/g. In addition, high-pressure H2 adsorption data reveal hysteretic uptake and release, with hysteresis loops of width 1.1, 3.8, 13, and 27 bar that shift to higher pressures as the temperature increases from 50 to 65, 77, and 87 K, respectively. The high H2 uptake capacity of 5.5 excess wt % at 50 K suggests that such materials could potentially find utility for hydrogen storage via a kinetic trapping mechanism. Variable-temperature kinetics measurements have also allowed the first study of H2 diffusion within a metal-organic framework, revealing an energy barrier of 0.62 kJ/mol for H2 diffusing within the pores.  相似文献   

19.
Bis(N-alkyldithiocarbamato)nickel(II) complexes (1–5) [Ni(S2CNHR)2] (where R?=?Me, Et, n-Pr, i-Pr, n-Bu) were synthesized by the reaction of NiCl2?·?6H2O and the corresponding sodium salt of N-alkyldithiocarbamate in 1?:?2 molar ratio in aqueous medium. These bis(N-alkyldithiocarbamato)nickel(II) complexes (1–5) were characterized by elemental analysis, UV-Visible, IR, and 1H/13C-NMR spectroscopy. The crystallographic investigation of [Ni(S2CNH(n-Pr))2] (3) and [Ni(S2CNH(i-Pr))2] (4) revealed distorted square-planar geometry around nickel(II). The dithiocarbamates have anisobidentate coordination with nickel and the dithiocarbamates are trans.  相似文献   

20.
Kao HM  Lii KH 《Inorganic chemistry》2002,41(22):5644-5646
High-temperature, high-pressure hydrothermal synthesis of the title compound and its (93)Nb and (29)Si MAS NMR spectra are reported. The (29)Si MAS NMR spectrum shows four signals corresponding to the four distinct Si sites in the structure. Three signals show multiplet patterns which arise from (93)Nb(spin-(9)/(2))-(29)Si J-coupling. This is the first example of two-bond J-coupling between a quadrupolar nucleus and a spin-(1)/(2) nucleus in the solid state. A combination of (93)Nb and (29)Si solid-state NMR and X-ray diffraction data has provided a correlation between NMR interaction parameters and local structure. This work opens a new opportunity to examine the relationship between (2)J-coupling and structural parameters in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号