首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.  相似文献   

2.
We present design criteria, operation principles and experimental examples of magnetic marker manipulation for our magnetic lab-on-a-chip prototype. It incorporates both magnetic sample preparation and detection by embedded GMR-type magnetoresistive sensors and is optimized for the automated point-of-care detection of four different sepsis-indicative cytokines directly from about 5 μl of whole blood. The sample volume, magnetic particle size and cytokine concentration determine the microfluidic volume, sensor size and dimensioning of the magnetic gradient field generators. By optimizing these parameters to the specific diagnostic task, best performance is expected with respect to sensitivity, analysis time and reproducibility.  相似文献   

3.
MR Imaging the spinal cord of non-human primates (NHP), such as squirrel monkey, is important since the injuries in NHP resemble those that afflict human spinal cords. Our previous studies have reported a multi-parametric MRI protocol, including functional MRI, diffusion tensor imaging, quantitative magnetization transfer and chemical exchange saturation transfer, which allows non-invasive detection and monitoring of injury-associated structural, functional and molecular changes over time. High signal-to-noise ratio (SNR) is critical for obtaining high-resolution images and robust estimates of MRI parameters. In this work, we describe our construction and use of a single channel coil designed to maximize the SNR for imaging the squirrel monkey cervical spinal cord in a 21 cm bore magnet at 9.4 T. We first numerically optimized the coil dimension of a single loop coil and then evaluated the benefits of a quadrature design. We then built an optimized coil based on the simulation results and compared its SNR performance with a non-optimized single coil in both phantoms and in vivo.  相似文献   

4.
A magnetic system is introduced which consists of three nested rings of permanent magnets of a Halbach dipolar layout and is capable for EPR spectroscopy. Two of the rings can be rotated independently to adjust the magnetic flux in the center and even allow for mechanical field sweeps. The presented prototype achieves a magnetic flux range of 0.0282–0.3013 T with a minimal sweep of 0.15 mT and homogeneity of about 10−3.First applications with CW and pulsed Mims ENDOR as well as ESEEM experiments on a sample of a glycine single crystal doped with 1% copper nitrate demonstrate that flux range, sweep accuracy and homogeneity of this prototype is sufficient for EPR experiments on most solid samples.Together with a recently improved design magnets can be build which could serve as compact and easily transportable replacement of standard electromagnets with negligible consumption of power or coolants.  相似文献   

5.
The advantages of open, vertical-field, magnetic resonance-guided, focused ultrasound surgery (MRgFUS) are attractive. The inverse technique using the bi-boundary conditions is proposed to design a uterine-oriented intraoperative RF coil with an ultrasound aperture for the MRgFUS system. In the current proposed scheme, the desired magnetic field of the RF coil was set to completely overlap the target organ. The current density distribution on the RF coil surface, accounting for the expected magnetic field, was solved using the inverse technique. The stream function was available through the ‘discretization’ of the current density distribution on the RF coil surface. The coil windings were obtained from the contour plot of the stream function. As a modification of previous designs, the bi-boundary conditions are proposed in the inverse technique for the existence of the ultrasound aperture. Based on the obtained coil windings, a prototype coil was constructed. MR imaging of the phantom and the human body was performed to show the efficacy of the prototype coil. The results of temperature measurement using the prototype coil in a 0.4-T MR system were satisfactory. The performance of the prototype coil improved compared with the previously reported design.  相似文献   

6.
A number of materials MR developments require that measurements be made in a large magnetic field gradient, including unilateral (single-sided) magnet designs for portability and open access. In such cases, all radiofrequency (RF) pulses are slice selective. Typically, little effort is made to tailor the shape of the selected slice, because shaped RF excitations are viewed as too lengthy in duration to be useful in materials MRI, where signal lifetimes are mostly less than 1 ms. We compare measured magnetization responses to various standard shaped pulses under extreme conditions of application (30 μs duration, offset frequencies up to 0.3 MHz, and in the presence of a 13 T/m permanent magnetic field gradient). We discuss the feasibility of their implementation for materials MRI in a large gradient, including the difficulty of choosing optimized pulse area, and propose viable solutions.  相似文献   

7.
A new method for rapid NMR imaging dubbed FLASH (fast low-angle shot) imaging is described which, for example, allows measuring times of the order of 1 s (64 × 128 pixel resolution) or 6 s (256 × 256 pixels). The technique takes advantage of excitation pukes with small hip angles eliminating the need of waiting periods in between successive experiments. It is based on the acquisition of the free induction decay in the form of a gradient echo generated by reversal of the read gradient. The entire imaging time is only given by the number of projections desired times the duration of slice selection and data acquisition. The method results in about a 100-fold reduction in measuring time without sacrificing spatial resolution. Further advantages are an optimized signal-to-noise ratio, the applicability of commercial gradient systems, and the deposition of extremely low rf power. FLASH imaging is demonstrated on phantoms, animals, and human extremities using a 2.3 T 40 cm bore magnet system. 1H NMR images are obtained with variable relaxation time contrasts and without motional artifacts.  相似文献   

8.
The relation between the magnetoimpedance and the magnetic properties of a wide set of soft magnetic microwires from several sources has been studied. Magnetic properties were obtained by vibrating sample magnetometry and ferromagnetic resonance spectroscopy. The magnetoimpedance voltage sensitivity of each sample, the criterion of interest for high sensitivity magnetometer design, was then evaluated at several frequencies and drive currents. It appears that all samples possess roughly similar properties, regardless of their fabrication process or chemical composition. The voltage sensitivity of the samples obtained from experimental measurement is compared with a simple model of sensitivity. The general trends predicted by the model provide useful insights for materials optimization. Averaged sensitivity over the sample set is around 10 kV/T/cm at 10 MHz. The critical importance for sensitive magnetometry of the maximum excitation current permissible in each wire is also highlighted.  相似文献   

9.
This study presents a simple design for a mobile, single-sided nuclear magnetic resonance (NMR) apparatus which uses the magnetic flux parallel to the magnetization direction of a single, disc-shaped permanent magnet polarized in radial direction. The stray magnetic field above the magnet is approximately parallel to the magnetization direction of the magnet and is utilized as the B0 magnetic field of the apparatus. The apparatus weighs 1.8 kg, has a compact structure and can be held in one's palm. The apparatus generates a B0 field strength of about 0.279 T at the center of apparatus surface and can acquire a clear Hahn echo signal of a pencil eraser block lying on the RF coil in one shot. Moreover, a strong static magnetic field gradient exists in the direction perpendicular to the apparatus surface. The strength of the static magnetic field gradient near the center of the apparatus surface is about 10.2 T/m; one-dimensional imaging of thin objects and liquid self-diffusion coefficient measurements can be performed therein. The available spatial resolution of the one-dimensional imaging experiments using a 5×5 mm horizontal sample area is about 200 μm. Several nondestructive inspection applications of the apparatus, including distinguishing between polyethylene grains of different densities, characterizing epoxy putties of distinct set times and evaluating the fat content percentages of milk powders, are also demonstrated. Compared with many previously published designs, the proposed design bears a simple structure and generates a B0 magnetic field parallel to the apparatus surface, simplifying apparatus construction and simultaneously rendering the selection of the radiofrequency coil relatively flexible.  相似文献   

10.
We present a uniplanar coplanar-waveguide 3-dB tandem coupler operating at V-band frequencies. The uniplanar structure is monolithically fabricated by using two-section parallel-coupled lines and air-bridge crossovers replacing the conventional multilayer or bonded structures. Due to an optimized tandem structure and non-bonded crossovers minimizing the parasitic components, a maximum coupling of 2.5 dB is measured at 62 GHz with a 2 dB bandwidth of 83%, while a high directivity factor of 33 dB is simultaneously obtained at 58–62 GHz. Over the entire design frequency range of 30–90 GHz, we achieve good phase unbalance of 90 ± 6.0°, as well as return loss and isolation lower than −23 and −16 dB, respectively.  相似文献   

11.
Magnetic resonance imaging sequences utilizing limited flip angles and gradient echoes yield rapid (less than 2 min) dynamic images of the cardiovascular system. These images contain both accurate anatomical and functional information. Using a gradient refocused acquisition in the steady state (GRASS) in the CINE mode, we studied the relationship between gradient echo signal intensity and velocity of steady and pulsatile flow in a phantom simulating medium to large vessels. Images were acquired on a 1.5 Tesla system (repetition TIME = 21 ms, echo TIME = 12 ms, flip ANGLE = 30 degrees). Data from each pulse interval were sorted in 16 images. Signal intensities from flow tube lumina and surrounding stationary water jacket were used to calculate contrast ratios which were compared to velocity measurements made with electromagnetic (EM) flow probes outside the magnet room. During steady flow, signal intensity contrast ratios increased with increasing flow and in a 10 mm thick slice, reached a peak at 48 cm/s, and declined for velocities up to 90 cm/s. Changes in instantaneous velocity during pulsatile flow correlated well (r > .88) with signal intensity changes up to a maximum mean velocity of 17 cm/s. Total signal intensity from the lumen for an “R to R” interval correlated extremely well (r > .97) with mean pulsatile flow velocities up to 30 cm/s. The excellent correlation between gradient echo signal intensity and actual flow velocities suggests that this imaging sequence might be useful for evaluating normal and pathologic flow phenomena.  相似文献   

12.
The consumer quality of baked products is closely related with dough structure properties. These are developed during dough fermentation and finalized during its baking. In this study, magnetic resonance microscopy (MRM) was employed in a study of dough fermentation and baking. A small hot air oven was installed inside a 2.35-T horizontal bore superconducting magnet. Four different samples of commercial bread mixes for home baking were used to prepare small samples of dough that were inserted in the oven and allowed to rise at 33°C for 112 min; this was followed by baking at 180°C for 49 min. The entire process was followed by dynamic T1-weighted 3D magnetic resonance imaging with 7 min of temporal resolution and 0.23×0.23×1.5 mm3 of spatial resolution. Acquired images were analyzed to determine time courses of dough pore distribution, dough volume and bread crust thickness. Image analysis showed that both the number of dough pores and the normalized dough volume increased in a sigmoid-like fashion during fermentation and decreased during baking due to the bread crust formation. The presented magnetic resonance method was found to be efficient in analysis of dough structure properties and in discrimination between different dough types.  相似文献   

13.
The temperature measurements during the infrared cooking of the semi-cooked cylindrical minced beef product (koefte) were taken by both contact (thermocouples) and non-contact (thermal imaging) techniques. The meat product was semi-cooked till its core temperature reached up to 75 °C by ohmic heating applied at 15.26 V/cm voltage gradient. Then, infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.7, 5.7 and 8.5 kW/m2), applied distances (10.5, 13.5 and 16.5 cm) and applied durations (4, 8 and 12 min). The average surface temperature increased as the heat flux and the applied duration increased but the applied distance decreased. The temperature distribution of the surface during infrared cooking was determined successfully by non-contact measurements. The temperature homogeneity varied between 0.77 and 0.86. The process condition of 8.5 kW/m2 for 8 min resulted in core temperature greater than 75 °C, which was essential for safe production of ready-to-eat (RTE) meat products. Thermal imaging was much more convenient method for minimizing the point measurement mistakes and determining temperature distribution images more clear and visual.  相似文献   

14.
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of approximately 14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.  相似文献   

15.
An intracavitary probe for magnetic resonance imaging of the pelvis has been developed that takes advantage of the “inside-out” spatial characteristics of a birdcage resonator. The probe consists of an eight-leg, birdcage resonator in a low-pass configuration operating in receive-only mode. The resonator circuit is mounted on a solid rod, is encased in Teflon®, and has been used to obtain detailed images of pelvic anatomy in a male canine. The approximate cylindrical symmetry of the external sensitivity profile of this type of circuit, employed in an intracavitary application, demonstrates the potential superiority of this type of probe design over single-loop intracavitary coils. Axial, coronal, and sagittal MR images, obtained with 8 and 16 cm fields of view, are presented to illustrate the advantages of this type of intracavitary probe compared with conventional body-coil images. The prototype described in this report has been designed for clinical use in human subjects and is currently undergoing testing to determine its efficacy in the evaluation of rectal, prostate, and gynecologic pathology.  相似文献   

16.
Acoustic noise produced during single point imaging (SPI) experiments was modulated by changes in the spatial encoding gradients. Parameters of both linear and sine-shaped gradient ramps were modified to minimize the acoustic noise levels. Acoustic noise measurements during SPI were measured on three different gradient systems and revealed that for small gradient-bore systems a considerable acoustic noise reduction of more than 20 dB can easily be achieved. SPI in conjunction with an optimized gradient waveform can be a superb alternative to the previously introduced single point ramped imaging with T(1) enhancement (SPRITE) method when sound levels and overheating of gradients are a concern.  相似文献   

17.
The possible applications of high-power millimeter (mm) and submillimeter waves from gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power micro- and mm-waves generated by gyrotron oscillators in the areas of RF-plasma production, heating, noninductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (8 GHz), electron cyclotron resonance heating (ECRH) (28–170 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering and heat-wave propagation experiments. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for generation of multi-charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high-frequency broadband electron paramagnetic resonance (EPR) spectroscopy. Future applications which await the development of novel high-power gyro-amplifiers include high resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of these recent applications of gyro-devices.  相似文献   

18.
The paper presents the experimental results on how the active additive HBr and the temperatures of the containers with CuBr influence the gain characteristics of large volume (8 cm bore, 90 cm long) CuBr laser active media with the external heating of the active zone of the gas discharge tube (GDT). It has been demonstrated that an increase in the concentration of CuBr vapors results in the contraction of the gain profile of the active medium, consistent with the increase of the gain factor in the axial region of GDT. The contraction is also imposed by HBr addition. Despite the fact that we used the external heating of GDT at the pump power of 1.5 kW and less, the energy input is still not sufficient to produce the effective generation for large active volume lasers; and it is evident from the small gain profile width. The maximum gain profile width under experimental conditions (consider Pout/Pin > 2) was 3 cm; this value was obtained without HBr-additive within the active volume, while the concentration of CuBr vapors being significantly less than optimal, that corresponds to the maximum average lasing power.  相似文献   

19.
A new giant magneto-impedance (GMI) biosensor prototype based on a glass-coated microwires array is reported. The optimal measurement conditions and the influence of a liquid suspension of commercially available polymer-based magnetic microparticles on the magneto-impedance (MI) response of the array were studied. The relative change in MI response enlarges as the number of the active microwires increases. The highest variation of 35% was found for 10 active microwires, for a current intensity of 10 mA. Some possible applications of the biosensor prototype are outlined.  相似文献   

20.
A new active infrared thermography based technique is proposed for defect detection in ferromagnetic specimens using a low frequency alternating magnetic field induced heating. The test specimens (four mild steel specimens with artificial rectangular slots of 8.0, 5.0, 3.3 and 3.0 mm depths) are magnetized using a low frequency alternating magnetic field and by using an infrared camera, the surface temperature is remotely monitored in real time. An alternating magnetic field induces an eddy current in the specimen which increases the specimen temperature due to the Joule’s heating. The experimental results show a thermal contrast in the defective region that decays exponentially with the defect depth. The observed thermal contrast is attributed to the reduction in induction heating due to the leakage of magnetic flux caused by magnetic permeability gradient in the defective region. The proposed technique is suitable for rapid non-contact wide area inspection of ferromagnetic materials and offers several advantages over the conventional active thermography techniques like fast direct heating, no frequency optimization, no dependence on the surface absorption coefficient and penetration depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号