首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
用正电子寿命谱技术研究了重掺Te的GaSb原生样品、电子辐照样品和质子辐照样品.室温正电子寿命测量揭示出原生重掺Te的GaSb样品中存在VGa相关缺陷,其寿命大小约为298 ps.电子辐照会使该缺陷发生变化,导致平均寿命值减小,VGa相关缺陷从-3价变为-2价.质子辐照后,产生了寿命值较大的缺陷.在10-300K变温实验中,观测到3种样品都存在浅捕获缺陷,该浅捕获缺陷是GaSb反位缺陷.  相似文献   

2.
测量了高强度聚苯乙烯(HIPS)的正电子寿命谱随γ辐照剂量的变化,观察到自由体积孔洞的平均半径随辐照剂量的增加而基本不变,且自由体积孔洞的浓度和半径分布宽度随辐照剂量的增加而减小.这一实验结果表明,γ辐照后高强度聚苯乙烯力学性能的改善与自由体积特性的变化相关联.  相似文献   

3.
利用正电子寿命谱和多普勒展宽谱技术研究了原生ZnO的缺陷结构及其退火效应. 经900 ℃退火之后,正电子寿命实验显示样品中的空位型缺陷基本被消除,其体寿命为180 ps.通过比较原生和退火样品的符合多普勒展宽谱的商谱曲线,两者有相似的峰型,结合寿命谱的相关数据表明原生ZnO中不存在H原子填充Zn空位.  相似文献   

4.
纳米材料的性能不仅与纳米晶粒本身的结构有关,而且与纳米晶体之间界面的微观结构有关.纳米粉在压实成纳米块过程中很难消除微孔洞,并且在压实过程中也会给晶粒引入结构缺陷.本文用正电子湮没谱学研究了纳米Cu固体材料微结构,发现在两种不同条件下压制成型的纳米Cu固体内部的晶粒界面均存在着单空位及空位团等缺陷.空位团的大小随着压制压力的增加而略有减小.通过退火实验发现纳米Cu固体的界面缺陷具有较好的热稳定性.即使在900℃高温下退火也只能使部分缺陷得到恢复,但是低压力下压制的样品中的缺陷恢复需要更高的温度.  相似文献   

5.
采用正电子寿命谱和拉曼散射研究了不同组分配比的Ge Sex(x=6,7,8,9)硫系玻璃的微结构.正电子寿命结果显示在x=8时,其平均正电子寿命具有最小值.拉曼光谱结果研究表明,这种硫系玻璃样品主要由[Ge Se4]四面体和Seμ链的结构单元构成.以上的实验结果用级配理论得到了合理的解释,这两种结构单元配比关系的变化导致硫系玻璃样品中的自由体积变化,从而导致正电子平均寿命减小.研究发现Ge Se8具有最小的自由体积,即具有最稳定的结构.  相似文献   

6.
用~(60)Co γ辐照对3种导电类型(P、N、SI)和不同掺杂浓度的InP晶体进行辐照,辐照剂量分别为10~3GY,10~4GY,10~5GY。在室温下测量了样品辐照前后的正电子寿命,发现随着辐照剂量的增加,正电子平均寿命基本不变或呈减小趋势,一方面是由于γ辐照使晶体内原子发生电离,导致晶体内空位型缺陷的电荷态发生变化,缺陷的负电性增加。另一方面γ辐照在晶体内产生缺陷,但大多数缺陷在正电子寿命测量前已在室温下退火,表明InP晶体具有较强的抗辐照能力。  相似文献   

7.
用正电子研究半导体材料GaSb的缺陷   总被引:1,自引:0,他引:1  
用正电子寿命谱和符合多普勒技术研究了电子辐照过的GaSb样品.揭示出原牛未掺杂GaSb样品中存在单空位型VGa相关缺陷,具有284ps左右的寿命值.电子辐照能使这种缺陷的浓度增大,使平均寿命值从辐照前的265Ps增大到辐照后的268ps.低温符合多普勒展宽实验结果表明退火后的电子辐照过的原生未掺杂GaSb样品中仍然存在反位缺陷Gasb.掺Zn、Te样品的实验也证实电子辐照在GaSb样品中会引入VGa,284 ps类型的缺陷.  相似文献   

8.
为了研究在激光驱动的等离子体尾场中被加速正电子的动力学,使用了由电子、正电子、离子组成的等离子体,通过采用数值模拟方法得到了非对称脉冲驱动的尾波场中被加速的正电子的运动相图、动能变化,势能。数据结果表明:非对称激光脉冲驱动尾场中正电子得到很高的能量。提高等离子体中的正电子比例会使电子和正电子的加速效果减弱。在非对称激光脉冲驱动的激光尾场中,为了有效地加速正电子,要选择恰当的上升激光脉冲长度和下降激光脉冲长度。  相似文献   

9.
简要介绍了本科研组近年来用正电子湮没谱学研究Ⅲ-V族化合物半导体缺陷的最新进展.包括原生样品中缺陷的种类、大小、电荷态、负离子缺陷、缺陷与杂质的相互作用、辐照以及形变引入的缺陷等,研究表明.在原生半导体材料中存在各种缺陷.经过辐照和形变后有单空位、双空位及孔洞形成;在重掺杂材料中,空位还补偿载流子、使载流子发生饱和.  相似文献   

10.
以20~300K的低温正电子湮没寿命谱学方法研究了NaY沸石、USY沸石及多孔γ-Al2O3的表面结构.实验分别测量了脱水后三样品的低温正电子湮没寿命谱,其中NaY,USY用5个寿命分量分解,γ-Al2O3用4个寿命分量分解.实验结果表明,较短的寿命分量与测量温度无关,而最长的寿命分量(约40ns)则与测量温度有关,不同的寿命温度相关性表明NaY的表面结构与γ-Al2O3的不同.  相似文献   

11.
用脉冲激光沉积方法在Al2O3(0001)衬底上制备了Zn薄膜,并在空气中氧化得到了ZnO薄膜.利用Raman光谱测量了氧化法制备的薄膜,并与ZnO单晶材料进行比较,证实了ZnO薄膜的形成.采用慢正电子束技术对ZnO薄膜的微观结构进行了研究,发现在薄膜中存在大量的空位型缺陷.当氧化后的薄膜在高温下退火后,缺陷浓度逐渐降低,在达到900℃时,所制备的ZnO薄膜中缺陷基本得到消除.  相似文献   

12.
压强和温度对聚苯乙烯自由体积的影响   总被引:1,自引:0,他引:1  
在30~130℃温度范围内测量了聚苯乙烯(PS)样品中的正电子素湮没寿命,据此计算了样品中自由体积的大小和自由体积分数,发现在不同的温度范围,它们随温度变化的斜率不同,由此确定了PS的玻璃化转变温度为80℃.同时,还研究了不同压强对PS的自由体积的大小、浓度及分布的影响.实验结果发现,压强从6MPa增大到20MPa时自由体积分布变窄.同时,当压强超过100MPa,o-Ps寿命分布由单峰变成双峰.这说明高的外力场作用下,样品中分子链构型发生变化,导致分子链堆积密度增加及局部有序区域的形成.  相似文献   

13.
采用正电子湮没寿命谱方法 ,对 1 .6× 1 0 1 6 cm- 2注量的 85 Me V1 9F离子辐照 P型 In P单晶的微观缺陷进行了研究 ,在 3 0 0~ 1 0 2 3 K的温度范围内测量了正电子湮没寿命随退火温度的变化 .实验表明 :辐射在 In P中产生单空位缺陷 ,在退火过程中单空位相互聚合形成双空位 .单空位和双空位分别在 5 73 K和 72 3 K温度完全被退火  相似文献   

14.
在10~290 K范围内测量了不同纳米粘土含量的尼龙6/蒙脱土纳米复合材料中的正电子湮没寿命谱.实验结果发现,在所有样品中,正电子素(otho-positron, o-Ps)的湮没寿命均随温度的升高而增加.在不同的温区段,o-Ps湮没寿命随温度变化的斜率不同,据此确定了尼龙6/蒙脱土纳米复合材料的两个次级松弛转变温度Tβ和Tγ,这是其他实验方法难以测量的.此外还发现,这种次级松弛转变温度随纳米蒙脱土含量的增加而增加.这表明,无机纳米相和聚合物基体间存在较强的界面相互作用,致使聚合物链段的运动受阻.正电子湮没寿命的连续谱分析还表明,纳米粘土的含量和温度对自由体积分布有重要影响.一个十分有趣的现象被发现--270 K时,在纳米复合材料中o-Ps湮没寿命的分布均裂变为双峰,而在纯尼龙6样品中没有观察到这种峰的裂变.这表明,纳米粘土的加入改变了纳米复合材料中有序区域内链段的堆积密度.  相似文献   

15.
采用正电子湮没寿命谱和符合多普勒展宽谱方法对AA2037连铸轧铝合金热轧板和70%冷轧板高温(约470℃)退火的沉淀相进行了研究.结果表明,正电子平均寿命随退火时间延长而减小.其原因是由于热轧或冷轧形变导致的空位、位错等缺陷的同复和再结晶;另一方面由于随退火时间延长沉淀相不断析出,符合多普勒展宽曲线出现明显的铜元素、锰元素的特征,并且沉淀相越多,信号越明显.这证实了沉淀相(T相)中存在铜元素和锰元素.  相似文献   

16.
应用正电子湮没技术 ,测量了 PET(聚对苯二甲酸乙二脂 )在不同温度下的正电子湮没寿命谱 .使用正电子寿命谱的离散分析法 (PATFIT) ,根据正电子湮没参数随温度的变化 ,两个次级转变点 Tβ和 Tγ被确定 .利用最新发展的连续谱的分析程序 (MEL T) ,得到几种不同温度下的自由体积的分布 ,发现低温下自由体积大小 ,数量及分布并非常量 ,同时发现在极低温 (30 K)下 ,自由体积的分布很宽 .  相似文献   

17.
采用正电子湮没寿命谱(PALS)研究了杯[4]芳烃,杯[6]芳烃,杯[8]芳烃3种新型主体分子以及C60与杯[8]芳烃的超分子化合物的微观结构,结果农明,杯芳烃低聚物中正-正电子素(o-Ps)湮没的寿命成分τ3、τ1、τ5分别来源于3种尺寸依次增人的湮没位置:晶区内较小的分子间空隙、杯芳烃的空腔和非晶区内分子间较大的空洞,由τ1得到杯[4]芳烃,杯[6]芳烃,杯[8]芳烃的圆台形空腔的等效球形、弘径分别为0.33,0.37,0.40nm,文中讨论了在杯[8]芳烃的守腔分子中包合C60分子后导致o-Ps的寿命和强度都显著降低的微结构因素。  相似文献   

18.
采用正电子湮没寿命谱( P A L S)研究了在140~350 K 温度范围内弹性体乙烯辛烯共聚物( P O E) 在140~350 K 温度范围内的自由体积和结构转变特性,得到 P O E的玻璃化转变温度 Tg 和次级转变温度 Tβ分别为220、170 K,并分析了决定其正电子湮没参数和结构转变的化学结构因素  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号