首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review presents the basic models used to analyze the self-assembly of protein macromolecules and the main results of studying the self-organization of macromolecules in terms of the concepts of amphiphilicity of an individual monomer unit. The features of the coil-globule transition of these macro-molecules in solutions with different concentrations are described in terms of the statistics of the distribution of monomer units and chain rigidity. It is shown that this model is efficient for interpreting and analyzing experimental data for the study of synthetic and biological macromolecules.  相似文献   

2.
The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial extent on the degree of polymerization of a macromolecule. Relatively short amphiphilic macromolecules in the poor-solvent region always form a spherical globule, with the transition to this globule involving one or two intermediate conformations. These are the disk globule if the Kuhn segment is relatively large and the string of spherical micelles or the disk globule in the case of relative flexible chains. The phase diagram of a long rodlike amphiphilic chain turned out to be even more complex. Namely, three characteristic regions were distinguished in the region of a poor solvent, depending on the chain rigidity: the region of a cylindrical globule without certain order in the main chain, the region of the cylindrical globule with blobs having the collagen ordering of the chain, and the region of coexistence of collagen-like and toroidal globules. In the intermediate transitional region, not only conformations of strings of spherical micelle beads but also the necklace conformations in which the polymer chain in each bead has collagen ordering can occur in this case.  相似文献   

3.
The properties and the self-assembly of single comb macromolecules in solution were studied. The elastic properties of a polymer chain with a high density of side chains forming a cylindrical brush were discussed, in particular, its persistence length was calculated. The cases of brushes with flexible and rigid side chains, as well as brushes with two types of incompatible side segments, were considered. It was shown that brushes with rodlike dangling chains have a higher rigidity. In addition, a comb macromolecule with the hydrophobic main chain and hydrophilic side chains was considered. Such a macromolecules in a selective solvent forms a globule with the hydrophobic core and a soluble shell. The specific feature of the globule is its ability to acquire nonspherical spatial forms. Problems related to the stability and transformation of globule shape are discussed in detail.  相似文献   

4.
The relation of the coil-globule transition in macromolecules consisting of amphiphilic and hydrophilic monomer units to the radius of action of the interaction potential is investigated by the method of computer-assisted experiments. The internal structure of globules formed by such macromolecules is significantly dependent on the radius of action of the potential. In the case of the long-range potential, the globule is characterized by the blob structure, while in the case of the short-range potential, a quasi-helical structure forms. In this structure, the skeleton of a macromolecule forms a helical turn, and the direction of twisting may vary from one turn to another. The coil-globule transition in such macromolecules proceeds through formation of the necklace conformation from quasi-helical micelle beads. For sufficiently long macromolecules, the dimensions of such globules are linearly dependent on the degree of polymerization.  相似文献   

5.
A Monte Carlo study is presented to discuss the influence of the side-chain topology on the enhancement of the persistence length of a molecular bottle-brush in a dilute athermal solution due to the excluded volume interactions between the side chains. The structures investigated consisted of freely jointed backbones of 100 hard spheres (beads) of diameter 1 to which 50 equally flexible side chains were grafted. The diameter of the side-chain beads was varied from 1 to 3 in the same units. For every given size of the side-chain bead, the length of the side chains was varied from 4 to 20 beads. The ratio between the persistence length and the bottle-brush diameter, which is the determining factor for lyotropic behavior of conventional semi-flexible chains, was found to be almost independent of the side-chain length. At the same time, it was found to increase considerably with increasing size of the side-chain beads, suggesting that by a proper choice of the chemistry lyotropic behavior of molecular bottle-brushes due to excluded-volume interactions between the side chains might be achieved. Moreover, relatively short side chains can be used since the side chain length has only a minor influence on the ratio between the persistence length and the diameter. These findings are in a good agreement with recent experimental observations.  相似文献   

6.
Novel macromolecular brushes with a polyimide backbone and diphilic diblock copolymer side chains consisting of a hydrophilic block of poly(methacrylic acid) adjacent to the backbone and the outer hydrophobic block of poly(methyl methacrylate) are synthesized. The synthesis includes the grafting of poly(tert-butyl methacrylate) to the polyimide chain followed by the polymerization of methyl methacrylate on the graft copolyimide as a branched multicenter macroinitiator. Brushes with diphilic side chains are obtained via the acidic hydrolysis of ester groups in the first block of side chains. The grafting polymerization of methacrylates is performed according to the “grafting from” approach by the method of pseudoliving atom transfer radical polymerization using two methodologies of polymerization activated by either copper- or iron-containing complexes. Conditions providing the controlled regime of the polymerization processes under study are found, and pathways for the targeted regulation of the degree of polymerization of methacrylate blocks and their grafting density are determined. As is shown by dynamic light scattering and transmission electron microscopy, the macromolecules of brushes with diphilic side chains form in ethanol homotypic, obviously spherical, supramolecular micellar structures with hydrodynamic radii in the range from 40 to 120 nm depending on the length and grafting density of the two blocks in diphilic side chains.  相似文献   

7.
A series of molecular brushes with a polyfluorene (PF) backbone and polymethacrylic acid side chains of varying lengths were prepared by atom transfer radical polymerization. The structure and composition of the synthesized compounds were confirmed by 1H NMR and IR spectroscopy. Effect of the length of the backbone on spectral and conformational parameters of the macromolecules in solutions was analyzed. The grafting density of side chains was about 90%. Spectral methods have been used to determine the dependence of side chain grafting on the luminescent properties of polymer solutions, including quantum yields. It was shown that an optimal length of polymethacrylic acid side chains provides solubility of the polymer brushes. Solutions of PF-graft-polymethacrylic acid complexes with the model substance curcumin were investigated. It was established that the molecular brushes containing curcumin form monomolecular micelles. Molecular brushes with zinc phthalocyanine, potential systems for photodynamic, and photothermal therapy, were studied.  相似文献   

8.
Summary: We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of polymerization. Relatively short amphiphilic molecules always form a spherical globule in a poor solvent, and the coil-globule transition includes one or two intermediate conformations, depending on the chain's stiffness. These are a disk-like globule in case of high enough Kuhn segment length, and a pearl necklace-like structure of spherical micelles and a disk-like globule in case of relatively flexible chains. The phase diagram of a long stiff amphiphilic chain was found to be more complex still. Thus three specific regions can be distinguished in the poor solvent region, depending on the chain stiffness. These correspond to a cylindrical globule without any specific backbone ordering, a cylindrical globule containing blobs with collagen-like ordering of the chain, and co-existence of collagen-like and toroidal globules. In the intermediate transition region in this case, apart from the pearl necklace-like conformations with spherical micelles, necklace conformations can be also observed where the polymeric chain has collagen-like ordering within each bead.  相似文献   

9.
Using molecular dynamics simulations, we study the effect of the brush grafting density and degree of polymerization of the side chains on conformations of brush layers made of charged bottle-brush macromolecules. The thickness of the brush layer first decreases with increasing brush grafting density; then, it saturates and remains constant in the wide interval of the brush grafting densities. The brush layers consisting of the bottle-brush macromolecules with longer side chains have a larger layer thickness. The elongation of the side chains of the bottle-brush macromolecules decreases with increasing brush grafting density. This contraction of the side chains is due to counterion condensation inside the volume occupied by bottle-brushes. Our simulations showed that counterion condensation is a multiscale process reflecting different symmetries of the bottle-brush layer.  相似文献   

10.
The effect of solvent quality on the equilibrium structure of a densely branched comb polymer is investigated based on the structure factor analyses by off-lattice Monte Carlo simulations. First, theta temperature (theta(infinity)) must be determined to identify the solvent condition. We locate the characteristic temperature theta(A)(N) at which the second virial coefficient vanishes and the transition temperature theta(R)(N) at which radius of gyration R(g) of the chain varies most rapidly with temperature, i.e., d(2)R(g)/dT(2)|(theta(R)) = 0. N represents the total number of monomers of a comb. As N --> infinity, theta(A) and theta(R) coincide to a point that is identified as the true theta temperature (theta(infinity)). The structure factors of the main chain, the side chain, and the whole polymer are calculated, respectively. It is found that at T = theta(infinity), the structural factors S(qR(g)) for the overall comb polymers match quite well with those of their Gaussian counterparts. When T< theta(infinity), the overall comb polymer assumes collapsed conformations, similar to a homogeneous sphere. However, the structure factor of the side chain indicates that it always remains in an expanded state regardless of the solvent condition. It is attributed to the strong interactions between side chains. The same effect leads to enhanced rigidity of the main chain in comparison to the linear chain, as clearly observed from the rescaled Kratky plot.  相似文献   

11.
In metallocene polymerization, termination by β-hydride elimination generates polymer chains containing unsaturated vinyl groups at their chain ends. Further polymerization of these macromonomers produces branched polymers. Material properties of the branched polymers not only depend on molecular weight and branching density, but also on chain structure. This work presents analytical expressions to predict the bivariate distribution of molecular weight and branching density for polymer chains having dendritic and comb structures. It is shown that when a single metallocene catalyst is used the formation of dendritic polymers is favored with only a very small fraction of highly branched chains assuming comb structure. The use of a binary catalyst system is therefore proposed to obtain high content of comb polymers. One catalyst generates macromonomers and the other yields in-situ branching. It is found that the comb polymers give much narrower molecular weight distributions than dendritic polymers with same branching densities.  相似文献   

12.
The collapse behavior of a single comblike copolymer chain has been studied by Monte Carlo simulations. It has been supposed that the solvent is good for the side chains but the solvent quality for the backbone chain changes. It has been shown that depending on the structural parameters of the comb copolymer (the lengths of the backbone and side chains, grafting density of the side chains) various thermodynamically stable morphologies of the collapsed backbone chain can be realized. In addition to ordinary spherical globule we have observed elongated structures as well as necklace-like conformations. The proposed model can be used to describe conformational behavior of stoichiometric complexes between block copolymers with a polyelectrolyte short block and oppositely charged linear homopolymers.  相似文献   

13.
Molecular dynamics (MD) simulations of coarse-grained regular comb heteropolymers have been performed to explore structural correlations at equilibrium in a nonselective solvent and during the transition from coil to micelle in a backbone-selective solvent. We primarily consider the static structure factor measured directly from the simulations. In the good solvent, we consider cases ranging from short to long side chains, with respect to the spacer length. Reasonable agreement with a previously published theoretical structure factor is observed for a limited subset of the comb architectures in a small wavevector range. When the side chains are much longer than the spacers, the side-chain structure factor approaches that of starlike polymers. Additionally, plateau values of the structure factor scale with the side-chain length to the power of 0.736 when the side chains are shorter than the spacers. The transition from an open coil to a collapsed micelle is examined in MD simulations with explicit-solvent particles. Upon a sudden quench the from nonselective solvent to the backbone-selective solvent, the coil-to-micelle transition occurs via a side-chain clusterization mechanism. The time-dependent structure factors measured during the collapse process have plateau values that scale with the average cluster size to the power of 0.9. The origin of these two scaling exponents is still unknown. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 983-993, 2005  相似文献   

14.
对不同长度及不同数量的高分子链在微直通道及微缩通道中的流动进行了模拟与分析.研究表明,高分子链的伸展状态与微通道的形状密切相关,微直通道中高分子链能较充分地伸展,方形微缩通道中高分子链未能充分伸展,而斜坡微缩通道中高分子链的伸展状态介于微直通道与方形微缩通道之间.高分子的存在对微通道系统的温度没有明显影响,对密度与水平流动速度有较明显的影响.高分子链的运动直接影响到周围的简单流体粒子,降低其周围流体粒子的流动速度,对密度与速度产生局部扰动,形成"拖曳"现象.高分子链分布越密集,长度越长,高分子链的拖曳现象越明显.  相似文献   

15.
Polyoctadecene-1, as isolated from a Ziegler-type polymerization, was examined by density and refractive index measurements and by differential thermal analysis. Two main transitions were observed, their sharpness suggesting that they are both first-order. Extraction with n-hexane at 25°C. separated the polymer into two almost equal fractions, each showing essentially one of these transitions. Transition temperatures were compared with those of certain other polymers having long n-alkyl side chains. From this comparison, and from the findings of other workers, it was concluded that the polymer of lower transition temperature is atactic polyoctadecene, in which the side chains only participate in crystallization, whereas the polymer of higher transition temperature is tactic polyoctadecene, in which crystallization involves both the main chain and side chains.  相似文献   

16.
The molecular weight distribution, polydispersity and the distribution of side chains within a GPC‐slice have been calculated for coeluting comb‐shaped polymers. It is assumed that the polymers were synthesized by grafting monodisperse side chains onto a backbone having a broad molecular weight distribution. Despite the broad polydispersity of the backbone the polydispersity within a GPC‐slice is rather narrow, as is the distribution of side chains. Consequently the effect of polydispersity on properties, which can be obtained by GPC coupled with molar mass sensitive detectors is negligible. However, this result is true only for the specific branching mechanism investigated.  相似文献   

17.
Crystalline poly(n-nonaldehyde) (PNA) was prepared by anionic polymerization of n-nonaldehyde (NA) in methylcyclohexane (MCH) with lithium tertiary butoxide (LTB) as the initiator. Normal low-temperature conditions did not give polymer reprodusibly; however, when the polymerization was carried out with a gradual temperature decrease to ?60°C holding at this temperature followed by completion at ?78°C, a moderate yield of PNA was obtained. The polymer was acetate capped and characterized. Infrared and PMR spectroscopy, as well as degradation of the polymer in the presence of 2,4-dinitrophenylhydrazine to the hydrazone, conclusively proved the chemical structure of the polymer. VPO measurements and measurement of the inherent viscosity showed the polymer to be of moderate molecular weight. PNA is highly crystalline and shows two transition regions, one corresponding to the melting of the main chain at temperatures above 120°C and one region between 50 and 80°C, which is related to the crystallization of the aliphatic side chains. PNA, although inherently brittle, can be extruded through an orifice at a temperature near the side-chain melting temperature to give an extrudate whose x-ray patterns show the characteristics of a fiber diagram. It is suggested that the crystal structure of the PNA is similar to that of poly(n-heptaldehyde) but with a larger a spacing, which is expected from a longer aliphatic side chain.  相似文献   

18.
The matrix synthesis of polyaniline in the presence of water-soluble aromatic polyamides containing sulfo acid groups has been studied. It has been shown that the nature of polyacid and the concentration of reagents affect the shape and dynamics of a change in absorption spectra. The S-shaped profile of kinetic curves for spectra variation and the experiments on the seed polymerization provide evidence for the autocatalytic character of polymerization. It has been concluded that, depending on the nature of polyacid, polymer complexes form in which polyaniline macromolecules are situated along main chains of polyacid macromolecules (the two-stream structure) or appear as side chains of polyacid macromolecules (the comb-shape structure). In the latter case, polyaniline macromolecules serve as ionic bridges crosslinking polyacid macromolecules, as is confirmed by the viscometric study of solutions in the course of polymerization.  相似文献   

19.
This article describes the syntheses and electro‐optical applications of liquid crystalline (LC) conjugated polymers, for example, poly(p‐phenylenevinylene), polyfluorene, polythiophene, and other conjugated polymers. The polymerization involves several mechanisms: the Gilch route, Heck coupling, or Knoevenagel condensation for poly(p‐phenylenevinylene)s, the Suzuki‐ or Yamamoto‐coupling reaction for polyfluorenes, and miscellaneous coupling reactions for other conjugated polymers. These LC conjugated polymers are classified into two types: conjugated main chain polymers with long alkyl side chains, namely main‐chain type LC polymers, and conjugated polymers grafting with mesogenic side groups, namely side‐chain type LC conjugated polymers. In general, the former shows higher transition temperature and only nematic phase; the latter possesses lower transition temperature and more mesophases, for example, smectic and nematic phases, depending on the structure of mesogenic side chains. The fully conjugated main chain promises them as good candidates for polarized electroluminescent or field‐effect devices. The polarized emission can be obtained by surface rubbing or thermal annealing in liquid crystalline phase, with maximum dichroic ratio more than 20. In addition, conjugated oligomers with LC properties are also included and discussed in this article. Several oligo‐fluorene derivatives show outstanding polarized emission properties and potential use in LCD backlight application. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2713–2733, 2009  相似文献   

20.
We investigate the poor-solvent collapse of short chains having different stiffness through self-consistent minimization of the intramolecular free energy under the constraint of fixed segment lengths between adjacent beads. At first the chains form the Random Gaussian Globule, where the beads are distributed at random at the same average distance from the centre of mass, while the segments show very little correlation. At a larger attractive potential, this collapsed globule undergoes a transition to one or more ordered compact states, depending on the chain stiffness. Under very strong contraction, all chains are described as a Compact Ordered Globule: the beads are again at a constant average distance from the centre of mass, while the segments jump back and forth at the globule's wall with a very large correlation. At intermediate contraction, the thinner and stiffer chains form the Oscillating Ordered Globule wherein the beads are alternatively distributed on two concentric on two concentric shells. In this case, we also find metastable states with nonsymmetrical conformations of the chain with respect to its ends. We also briefly discuss the thermodynamics of the coil-globule and globule-globule transitions, showing that in long polymer chains these ordered conformations cannot involve the whole chain. However, we suggest that they might still be found as local globules that form for kinetic reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号