首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The paper is concerned with the determination of edge effect zone in a laminated composite with laminas subject to longitudinal compression. The dependence of the maximum decay length on the ratio between the period of external loading and the structure parameter is studied. The load period depends on the number of unloaded laminas. The decay of the edge effect is analyzed by numerically solving a boundary-value problem of elasticity for piecewise-homogeneous materials and using a quantitative decay criterion for the near-edge normal stresses __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 8, pp. 89–96, August 2006.  相似文献   

2.
A fast multipole method (FMM) is applied for BEM to reduce both the operation and memory requirement in dealing with very large scale problems. In this paper, a new version of fast multipole BEM for 2D elastostatics is presented and used for simulation of 2D elastic solid with a large number of randomly distributed inclusions combined with a similar subregion approach. Generalized minimum residual method (GMRES) is used as an iterative solver to solve the equation system formed by BEM iteratively. The numerical results show that the scheme presented is applicable to certain large scale problems. The project supported by the National Nature Science Foundation of China (10172053) and the Ministry of Education  相似文献   

3.
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor. The project supported by the National Natural Science Foundation of China (19932030)  相似文献   

4.
The effects of an external store on the flutter characteristics of a composite laminated plate in a supersonic flow are investigated. The Dirac function is used to formulate the interaction between the plate and the store. The first-order piston theory is used to describe the aerodynamic load. The governing equation of the composite laminated plate with an external store is established based on the Hamilton principle. The mode shapes are constructed by the admissible functions which are a set of characteristic orthogonal polynomials generated directly by the Gram-Schmidt process, and the boundary constraint is modeled as the artificial springs. The frequency and mode shapes of the plate under different boundaries are determined by the Rayleigh-Ritz method. The validity of the proposed approach is confirmed by comparing the results with those obtained from the finite element method (FEM). The effects of the mounting position, the center of gravity position and the mounting points spacing of the external store on the flutter boundary are discussed for both the simply supported and cantilever plates, respectively, which correspond to the two installation sites of the external store, i.e., the belly and wings of the aircraft.  相似文献   

5.
基于Reissner-Mindlin一阶剪切变形板理论,采用摄动-Galerkin混合法,给出双参数弹性地基上四边自由矩形中厚板在对称分布局部荷载作用下的大挠度弯曲渐近解,满足全部自由边界条件和控制方程,同时讨论弹性地基刚度系数对自由矩形厚板大挠度弯曲的影响。  相似文献   

6.
为研究梯形截面的钢桁腹-混凝土组合箱梁的畸变效应,在薄壁箱梁理论的基础上,考虑钢桁腹杆的力学特性,应用改进的板元分析法建立畸变控制微分方程,并给出畸变解析解。通过ANSYS建立实体模型验证所推公式的正确性。结合数值算例,对比分析在均布畸变荷载作用下相同截面参数的钢桁腹-混凝土组合箱梁和传统混凝土箱梁的畸变翘曲正应力,并分析梁宽和钢腹杆俯角对组合箱梁畸变内力的影响。结果表明,相同截面参数下,由于组合箱梁钢桁腹杆的纵向刚度很小,其畸变翘曲正应力为混凝土箱梁的1.71倍;梁宽对畸变内力影响较大,当梁宽增加至4.5 m时,畸变双力矩和畸变矩分别增大至3.68倍和1.36倍,且前者在纵向上双峰的分布趋势逐渐平缓;腹杆俯角对畸变双力矩影响较大,当腹杆俯角增加至27°时,畸变双力矩减小了约14.3%,但其对畸变矩影响很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号