首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
A comparative angle-resolved photoemission measurement has been performed on nonsuperconductive Bi2Sr2Ca0.4Y0.6Cu2O8 and superconductive Bi2Sr2CaCu2O8 to study the nature and origin of the electronic states near the Fermi level. It was found that hole-doping does not cause a rigid shift of the density of states relative to the Fermi level, but creates new electronic states in the vicinity of the Fermi level.  相似文献   

2.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

3.
王广涛  张琳  张会平  刘畅 《计算物理》2015,32(1):107-114
采用第一性原理方法,对BaTi2Bi2O的电子结构和磁性进行计算.非磁性态的计算结果显示:费米能级处的态密度主要来自dz2,dx2-y2dxy三个轨道,同时费米面也主要有三部分组成,并且将其沿着矢量q1=(π/a,0,0)和q2=(0,π/a,0)平移时,第三部分费米面(沿着X-R连线)与第一部分费米面(M-A连线)嵌套明显,计算得出磁化系数χ0(q)在X点出现峰值,与峰值出现在M点的FeAs基超导体不同.上述磁化率峰值可以诱导产生自旋密度波,使得BaTi2Bi2O材料的磁性基态是bi-collinear antiferromagnetism(AF3)与blocked checkerboard antiferromagnetism(AF4)的二度简并态.随着空穴掺杂,χ0(q)的峰值降低,而电子掺杂则导致峰值变大.当自旋涨落被完全压制时,超导出现,这可以解释为什么超导只出现在空穴掺杂型化合物而非电子掺杂型.  相似文献   

4.
We report the changes of the 5DJ-7F0(J = 2, 1, 0) transition probability with composition y and its effect on the hole burning quantum efficiency in the SryBa1−yFCl0.5Br0.5:Sm2+ system. We observed that the 5DJ-7F0 transition probability increases with the increase of Sr concentration. This result is attributed to the reduction of the energy separation between the 5DJ level and the 4f5d bands, which makes the electron wave functions of 5DJ states mix further with that of the 4f5d states. The dependence of the hole-burning quantum efficiency on the 5DJ-7F0 transition probability was derived by the dynamical equations of the spectral hole burning of divalent samarium. Furthermore, the hole-burning experiments in SrFCl0.5Br0.5:Sm2+ and BaFCl0.5:Sm2+ were performed under the same conditions. The experimental results present that the hole-burning quantum efficiency of SrFCl0.5Br0.5:Sm2+ is higher than that of BaFCl0.5Br0.5:Sm2+.  相似文献   

5.
We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.  相似文献   

6.
Based on first principles calculations and the K·p effective model, we propose that alkali metal deposition on the surface of hexagonal XN2 (X= Cr, Mo, W) nanosheets induces topologically nontrivial phases in these systems. When spin orbit coupling (SOC) is disregarded, the electron-like conduction band from N-pz orbitals can be considered to cross the hole-like valence band from X-d2z orbitals, thereby giving rise to a topological nodal line state in lithium-functionalized XN2 sheets (Li2MoN2 and Li2WN2). Such band crossing is protected by the existence of mirror reflection and time reversal symmetry. More interestingly, the bands cross exactly at the Fermi level, and the linear dispersion regions of such band crossings extend to as high as 0.9 eV above the crossing. For Li2CrN2, the results reveal the emergence of a Dirac cone at the Fermi level. Our calculations show that lattice compression decreases the thickness of a Li2CrN2 nanosheet, leading to phase transition to a nodal line semimetal. The evolution of the band gap of Li2XN2 at the Γ point indicates that the nontrivial topological character of Li2XN2 nanolayers is stable over a large strain range. When SOC is included, the band crossing point is gapped out giving rise to quantum spin Hall states in Li2CrN2 nanosheets, while for Li2MoN2, the SOC-induced gap at the crossing points is negligible.  相似文献   

7.
B. Ha  J. H. Rhee  Y. Li  D. Singh  S. C. Sharma   《Surface science》2002,520(3):186-192
The electronic valence band structures of polymerized thin films of C60 and La0.1C60 have been studied by using ultra-violet photoelectron spectroscopy. Additionally, the films have been characterized by using Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The valence band of the C60 film shows major peaks at binding energies of 2.6, 7.2, 10.3, and 12.6 eV. In the case of the doped film, we observe (i) an additional peak with a binding energy of 13.7 eV, (ii) evidence for redistribution of the density of electronic states due to hybridization between the 5d orbitals of La and the C60 cage, and (iii) significantly higher density of the electronic states near the Fermi energy. The valence band spectra of the doped film are in good agreement with recent results of the density functional theory that support strong hybridization between the d-valence orbitals of La and the C60 cage.  相似文献   

8.
高淼  孔鑫  卢仲毅  向涛 《物理学报》2015,64(21):214701-214701
通过第一性原理密度泛函和超导Eliashberg理论计算, 我们研究了Li2C2Cmcm相的电子结构和电声耦合特性, 预言这种材料在常压和5GPa下是由电声耦合导致的转变温度分别为13.2 K 和9.8 K的超导体, 为实验上探索包含一维碳原子链的材料中是否可能存在超导电性、发现新的超导体提供了理论依据. 如果理论所预言的Li2C2超导电性得到实验的证实, 这将是锂碳化物中转变温度最高的超导体, 高于实验观测到的LiC2的1.9 K和理论预言的单层LiC6的8.1 K超导转变温度.  相似文献   

9.
朱冰  冯灏 《物理学报》2017,66(24):243401-243401
基于静电-交换和密耦合两种模型,采用R矩阵方法,研究了低能电子与二氧化氮自由基分子的积分散射截面和动量迁移散射截面,包括弹性散射和从电子基态到电子激发态的非弹性散射.采用aug-cc-pVTZ基组进行靶分子结构优化和散射研究.在密耦合模型中,包含6个电子的最低三个占据轨道1b_2,1a_1,2a_1被冻结,其余17个电子自由运动在活化空间中,并给活化空间增加了2b_1和7a_1两个虚轨道.包含了所有垂直激发能小于20 eV的靶分子电子组态,得到了收敛的散射截面,并与最新理论和实验值进行了比较.当入射能量小于4 eV时,本文结果与实验值符合得更好,校正了以往部分理论结果在极低能量处过高的现象,表明关联效应对于极低能量散射是非常重要的.  相似文献   

10.
丁超  李卫  刘菊燕  王琳琳  蔡云  潘沛锋 《物理学报》2018,67(21):213102-213102
基于第一性原理的密度泛函理论和平面波超软赝势法,采用广义梯度近似算法研究了Sb,S两种元素共掺杂SnO2材料的电子结构与电学性质.电子结构表明:共掺杂后材料仍然为n型导电直接带隙半导体;电荷密度分布改变,S原子与Sn,Sb原子轨道电子重叠加剧.能带结构表明,Sb,S共掺SnO2在能带中引入新的能级,能带带隙相比于单掺更加窄化,费米能级进入导带表现出类金属特性.电子态密度计算结果进一步证实了电子转移的正确性:在价带中部,S原子轨道与Sn,Sb轨道发生杂化,电子转移加剧,价带顶部被S 3p轨道占据,提供了更多的空穴载流子,价带顶上移;随着S掺杂浓度的增加,带隙宽度继续减小,导带逐渐变窄,导电性能呈现越来越好的趋势.  相似文献   

11.
To investigate why the sensitivity of the Néel temperature TN of the antiferromagnetic (AF) layered copper perovskites (typically La2CuO4) to diamagnetic impurities such as Zn is reportedly much larger than in the AF members of the K2NiF4 family, we first treat the effect of a concentration c of impurities on the uncorrelated electronic states in the coherent potential approximation (CPA). Then we consider the Heisenberg hamiltonian as the large correlation limit of the Hubbard hamiltonian for a single band of impurity-modified electronic states. The correlation effects are treated variationally. The model is solved explicity by using a rectangular density of states, and we obtain the c-dependent exchange J, staggered moment Sq, spin wave velocity and transverse susceptibility at zero temperature. We take into consideration several recently proposed formulae for TN in the clean limit, and include the impurity effects by exploiting the results obtained, in order to test their predictions against the experimental TN(c) data for La2Cu1−cZncO4. Our results suggest that, to explain the difference between the K2NiF4 and the La2 CuO4 families, one should consider both the sign and the magnitude of the difference I≡εB−εA between impurity (B) and host (A) ionic potentials. The slowly decreasing trend of TN(c) in the K2NiF4 family is reproduced if I is negative and sizeable, or positive but very small, while the quick decrease typical of the copper perovskites requires a positive and rather large I. For reasonable values of the interaction parameters, among the several models we compare, only the model of Chakravarty, Halperin and Nelson is able to semi-quantitatively reproduce the non-linear behaviour of TN(c) reported for La2Cu1−cZncO4, provided the spin stiffness is assumed to scale with c as appropriate to Fermi liquids.  相似文献   

12.
Superconductivity reported at 110 K, and recently at 150–170 K, in the infinite-layered (SrxCa1−x)CuO2 system is investigated by means of the full potential linear muffin-tin orbital (FLMTO) method. As in other high-Tc cuprates, the electronic structure of the parent compounds, CaCuO2 and SrCuO2, and of the separately calculated composition Sr0.7Ca0.3CuO2 using the experimental lattice parameters, displays strong 2D features including a low density of states at EF (lower than in the other cuprates) and a simple 2D Fermi surface (rounded square) with strong nesting due to a single hybridized Cu d-O p band. As in La2CuO4, a major van Hove saddle-point singularity exists near EF. The drastic changes of the Fermi surface when Ca/Sr vacancies shift the Fermi energy to the van Hove singularity may have a strong influence on the superconducting properties of the compounds and indicate the need for Sr/Ca vacancies in inducing the high Tc.  相似文献   

13.
In the transition state model using the LMTO-Green function method an investigation is performed of the changes in energy distribution of Cu3d and O2p states in the valence band of La2CuO4 which are caused by the presence of the photoelectron hole. It is shown that taking the hole into account leads to a sharp decrease in the density of Cu3d states on the Fermi level and to a low-energy shift of the d band edge relative to the Fermi level. The grounds for the suggestion of the purely oxygenic nature of hole carriers in high-Tc superconductors are discussed.  相似文献   

14.
利用第一性原理计算方法,研究了CuHg2Ti结构下Ti2CrK(K=Sb,Ge,Sn,Sb,Bi)系列合金的电子结构、能隙起源和磁性.研究发现:Ti2CrK(K=Si,Ge)合金是普通半导体材料;Ti2CrK(K=Si,Bi)合金是亚铁磁性半金属材料,其半金属性能隙受到Sb和Bi原子s态的直接影响;Ti2CrSn合金是完全补偿的亚铁磁性半导体.基于Ti2CrSn合金两个自旋方向上的能隙起源不同,通过Si和Ge替换掺杂同族Sn元素调制能隙的宽度,获得了完全补偿亚铁磁性自旋无能隙材料;通过Fe和Mn替换掺杂过渡族Cr元素获得了一系列半金属材料.Ti2Cr1-xFexSn和Ti2Cr1-xMnxSn合金都具有亚铁磁性.所研究的这些半金属性合金的分子磁矩Mtotal与总的价电子数Zt服从Mtotal=Zt-18规则.  相似文献   

15.
郭丽娟  胡吉松  马新国  项炬 《物理学报》2019,68(9):97101-097101
采用第一性原理方法研究了二硫化钨/石墨烯异质结的界面结合作用以及电子性质,结果表明在二硫化钨/石墨烯异质结中,其界面相互作用是微弱的范德瓦耳斯力.能带计算结果显示异质结中二硫化钨和石墨烯各自的电子性质得到了保留,同时,由于石墨烯的结合作用,二硫化钨呈现出n型半导体.通过改变界面的层间距可以调控二硫化钼/石墨烯异质结的肖特基势垒类型,层间距增大,肖特基将从p型转变为n型接触.三维电荷密度差分图表明,负电荷聚集在二硫化钨附近,正电荷聚集在石墨烯附近,从而在界面处形成内建电场.肖特基势垒变化与界面电荷流动密切相关,平面平均电荷密度差分图显示,随着层间距逐渐增大,界面电荷转移越来越弱,且空间电荷聚集区位置向石墨烯层方向靠近,导致费米能级向上平移,证实了肖特基势垒随着层间距的增加由p型接触向n型转变.本文的研究结果将为二维范德瓦耳斯场效应管的设计与制作提供指导.  相似文献   

16.
Tunneling studies have been carried out on single crystals of Bi2Ca1−xSrxCu2O8+δ over a wide range of compositions wherein the hole concentration varies by a factor of 2.5. The 2Δ value varies between 25 meV and 75 meV over the composition range studied, but scales with 2Δ/kBTc≈9.5 throughout.  相似文献   

17.
The technique of transmission electron energy loss spectrometry (EELS) in parallel detection has been utilized to analyze the fine structures associated with the O K and Cu L3 absorption edges of recently discovered Y1−xCaxSr2Cu2GaO7 (0.1 ≤ x ≤ 0.4) series of compounds, which exhibit superconductivity when annealed under high-pressure oxygen atmosphere. We find subtle but significant changes in EELS spectral features of nonsuperconducting and superconducting specimens of these compounds. A broad pre-edge feature is observed below the O K absorption edge, at about 528.2 eV which emerges with Ca-doping alone. Evidence is presented for another O K secondary pre-edge feature, at about 1.1 eV below the first O K pre-edge feature in only those specimens which have undergone high-pressure oxygen treatment (i.e. superconducting specimens). We interpret the O K pre-edge feature as due to formation of holes on oxygen sites and propose that the first broad pre-edge feature (at 528.2 eV) is associated with holes on oxygen sites other than the CuO2 planes, which are responsible for normal conductivity. The second smaller pre-edge feature (at 527.1 eV) is most probably associated with holes in the CuO2 planes, which are associated with superconductivity in this system. The presence of a secondary smaller O K pre-edge feature in the superconducting specimens appears to correlate well with a broad shoulder on the high energy side of the Cu L3 edge. The results are interpreted in terms of oxidation of CuO2 planes through charge transfer between copper and oxygen in the CuO2 planes, i.e. covalent mixing of O and Cu orbitals at the Fermi level as a result of high oxygen pressure annealing.  相似文献   

18.
王小卡  汤富领  薛红涛  司凤娟  祁荣斐  刘静波 《物理学报》2018,67(16):166401-166401
采用基于密度泛函理论的第一性原理计算方法系统研究了Cu_2ZnSnS_4体相的晶格结构、能带、态密度及表面重构与H,Cl和F原子在Cu_2ZnSnS_4(112)表面上的吸附和钝化机理.计算结果表明:表面重构出现在以金属原子Cu-Zn-Sn终止的Cu_2ZnSnS_4(112)表面上,并且表面重构使表面发生自钝化;当单个H,Cl或F原子吸附在S原子终止的Cu_2ZnSnS_4(112)表面上时,相比于桥位(bridge)、六方密排(hcp)位和面心立方(fcc)位点,三种原子均在特定的顶位(top)吸附位点表现出最佳稳定性.当覆盖度为0.5 ML时,无论H,Cl还是F原子占据Cu_2ZnSnS_4(112)表面的2个顶位均具有最低的吸附能.以S原子终止的Cu_2ZnSnS_4(112)表面在费米能级附近的电子态主要由价带顶部Cu-3d轨道和S-3p轨道电子贡献,此即表面态.当H,Cl或F原子在表面的覆盖度达0.5 ML时,费米能级附近的表面态降低,其中H原子钝化表面态的效果最佳,Cl原子的效果次之,F原子的效果最差.表面态降低的主要原因在于吸附原子从S原子获得电子致使表面Cu原子和S原子在费米能级处的态密度峰几乎完全消失.  相似文献   

19.
The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFe1.5Se2 are investigated. A rhombus-type Fe vacancy order with stripetype antiferromagnetic (AFM) order is found, as was observed in neutron scattering experiments [J. Zhao, et al., Phys. Rev. Lett. 109, 267003 (2012)]. Hopping parameters are obtained by fitting the experimentally observed stripe AFM phase in real space. These hopping parameters are then used to study the ground-state properties of the semiconductor in momentum space. It is found to be a strongly correlated system with a large on-site Coulomb repulsion U, similar to the AFM Mott insulator — the parent compound of copper oxide superconductors. We also find that the electronic occupation numbers and magnetizations in the dxz and dyz orbitals become different simultaneously when U>Uc (~3.4 eV), indicating orbital ordering. These results imply that the rotational symmetry between the two orbitals is broken by orbital ordering and thus drives the strong anisotropy of the magnetic coupling that has been observed by experiments and that the stripe-type AFM order in this compound may be caused by orbital ordering together with the observed large anisotropy.  相似文献   

20.
Results of self-consistent band calculations are reported for the C15 structured XAl2 materials (X = Y, La, and Ce) using the local spin density functional formalism for assumed ferromagnetic and antiferromagnetic states as well as the paramagnetic state. The X-atoms are found to be the dominant factor is determining the electronic structure near the Fermi energy and this is enhanced by the presence of f-bands close to (LaAl2) or at (CeAl2) the Fermi energy. In paramagnetic CeAl2, the f-bands are about 1 eV wide and, although principally above the Fermi energy, extend down to accomodate the additional electron compared to LaAl2. The ferromagnetic state is found not to be stable. By contrast, the antiferromagnetic state is found to be stable with a magnetic moment of 0.88μB per Ce atom in very good agreement with the maximum moment, 0.89μB found in the neutron measurements of Barbara et al. A significant narrowing of the f-bandwidth is observed in the antiferromagnetic state. The antiferromagnetic spin density ordering appears to be related to nesting features in this underlying Fermi surface in LaAl2 (i.e., no 4f electron) rather than that of CeAl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号