首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfect Secret Sharing Schemes on Five Participants   总被引:1,自引:0,他引:1  
A perfect secret sharing scheme is a system for the protection of a secret among a number of participants in such a way that only certain subsets of these participants can reconstruct the secret, and the remaining subsets can obtain no additional information about the secret. The efficiency of a perfect secret sharing scheme can be assessed in terms of its information rates. In this paper we discuss techniques for obtaining bounds on the information rates of perfect secret sharing schemes and illustrate these techniques using the set of monotone access structures on five participants. We give a full listing of the known information rate bounds for all the monotone access structures on five participants.  相似文献   

2.
Bounds and Characterizations of Authentication/Secrecy Schemes   总被引:2,自引:0,他引:2  
We consider authentication/secrecy schemes from the information theoretic approach. We extend results on unconditionally secure authentication schemes and then consider unconditionally secure authentication schemes that offer perfect L-fold secrecy. We consider both ordered and unordered secrecy. We establish entropy bounds on the encoding rules for authentication schemes with these types of secrecy. We provide some combinatorial characterizations and constructions for authentication schemes having perfect L-fold secrecy that meet these bounds.  相似文献   

3.
In this paper, we present three algebraic constructions of authentication codes with secrecy. The first and the third class are optimal. Some of the codes in the second class are optimal, and others in the second class are asymptotically optimal. All authentication codes in the three classes provide perfect secrecy.  相似文献   

4.
New Colored Visual Secret Sharing Schemes   总被引:8,自引:0,他引:8  
Visual secretsharing (VSS) schemes are used to protect the visual secret bysending n transparencies to different participantsso that k-1 or fewer of them have no informationabout the original image, but the image can be seen by stackingk or more transparencies. However, the revealedsecret image of a conventional VSS scheme is just black and white.The colored k out of n VSS scheme sharinga colored image is first introduced by Verheul and Van Tilborg[1]. In this paper, a new construction for the colored VSS schemeis proposed. This scheme can be easily implemented on basis ofa black & white VSS scheme and get much better block lengththan the Verheul-Van Tilborg scheme.  相似文献   

5.
A Linear Construction of Secret Sharing Schemes   总被引:1,自引:0,他引:1  
In this paper, we will generalize the vector space construction due to Brickell. This generalization, introduced by Bertilsson, leads to secret sharing schemes with rational information rates in which the secret can be computed efficiently by each qualified group. A one to one correspondence between the generalized construction and linear block codes is stated, and a matrix characterization of the generalized construction is presented. It turns out that the approach of minimal codewords by Massey is a special case of this construction. For general access structures we present an outline of an algorithm for determining whether a rational number can be realized as information rate by means of the generalized vector space construction. If so, the algorithm produces a secret sharing scheme with this information rate.  相似文献   

6.
In this paper we study linear secret sharing schemes by monotone span programs, according to the relation between realizing access structures by linear secret sharing schemes and computing monotone Boolean functions by monotone span programs. We construct some linear secret sharing schemes. Furthermore, we study the rearrangements of access structures that is very important in practice.  相似文献   

7.
We discuss the concept of anonymity in an unconditionally secure secret sharing scheme, proposing several types of anonymity and situations in which they might arise. We present a foundational framework and provide a range of general constructions of unconditionally secure secret sharing schemes offering various degrees of anonymity.  相似文献   

8.
9.
In an anonymous secret sharing scheme the secret can be reconstructed without knowledge ofwhich participants hold which shares.In this paper some constructions of anonymous secret sharing schemeswith 2 thresholds by using combinatorial designs are given.Let v(t,w,q)denote the minimum size of the setof shares of a perfect anonymous(t,w)threshold secret sharing scheme with q secrets.In this paper we provethat v(t,w,q)=(q)if t and w are fixed and that the lower bound of the size of the set of shares in[4]is notoptimal under certain condition.  相似文献   

10.
Detection of Cheaters in Vector Space Secret Sharing Schemes   总被引:23,自引:0,他引:23  
A perfect secret sharing scheme is a method of distributing shares of a secret among a set P of participants in such a way that only qualified subsets of P can reconstruct the secret from their shares and non-qualified subsets have absolutely no information on the value of the secret. In a secret sharing scheme, some participants could lie about the value of their shares in order to obtain some illicit benefit. Therefore, the security against cheating is an important issue in the implementation of secret sharing schemes. Two new secret sharing schemes in which cheaters are detected with high probability are presented in this paper. The first one has information rate equal to 1/2 and can be implemented not only in threshold structures, but in a more general family of access structures. We prove that the information rate of this scheme is almost optimal among all schemes with the same security requirements. The second scheme we propose is a threshold scheme in which cheaters are detected with high probability even if they know the secret. The information rate is in this case 1/3 In both schemes, the probability of cheating successfully is a fixed value that is determined by the size of the secret.  相似文献   

11.
In this paper we provide upper and lower bounds on the randomness required by the dealer to set up a secret sharing scheme for infinite classes of access structures. Lower bounds are obtained using entropy arguments. Upper bounds derive from a decomposition construction based on combinatorial designs (in particular, t-(v,k,) designs). We prove a general result on the randomness needed to construct a scheme for the cycle Cn; when n is odd our bound is tight. We study the access structures on at most four participants and the connected graphs on five vertices, obtaining exact values for the randomness for all them. Also, we analyze the number of random bits required to construct anonymous threshold schemes, giving upper bounds. (Informally, anonymous threshold schemes are schemes in which the secret can be reconstructed without knowledge of which participants hold which shares.)  相似文献   

12.
A secret sharing scheme for an incomplete access structure (,) is a method of distributing information about a secret among a group of participants in such a way that sets of participants in can reconstruct the secret and sets of participants in can not obtain any new information about the secret. In this paper we present a more precise definition of secret sharing schemes in terms of information theory, and a new decomposition theorem. This theorem generalizes previous decomposition theorems and also works for a more general class of access structures. We demonstrate some applications of the theorem.  相似文献   

13.
In this paper we study secret sharing schemes whose access structure has three or four minimal qualified subsets. The ideal case is completely characterized and for the non-ideal case we provide bounds on the optimal information rate.AMS Classification 94A62  相似文献   

14.
Tight Bounds on the Information Rate of Secret Sharing Schemes   总被引:4,自引:0,他引:4  
A secret sharing scheme is a protocol by means of which a dealer distributes a secret s among a set of participants P in such a way that only qualified subsets of P can reconstruct the value of s whereas any other subset of P, non-qualified to know s, cannot determine anything about the value of the secret.In this paper we provide a general technique to prove upper bounds on the information rate of secret sharing schemes. The information rate is the ratio between the size of the secret and the size of the largest share given to any participant. Most of the recent upper bounds on the information rate obtained in the literature can be seen as corollaries of our result. Moreover, we prove that for any integer d there exists a d-regular graph for which any secret sharing scheme has information rate upper bounded by 2/(d+1). This improves on van Dijk's result dik and matches the corresponding lower bound proved by Stinson in [22].  相似文献   

15.
Constructions and Properties of k out of n Visual Secret Sharing Schemes   总被引:10,自引:0,他引:10  
The idea of visual k out of n secret sharing schemes was introduced in Naor. Explicit constructions for k = 2 and k = n can be found there. For general k out of n schemes bounds have been described.Here, two general k out of n constructions are presented. Their parameters are related to those of maximum size arcs or MDS codes. Further, results on the structure of k out of n schemes, such as bounds on their parameters, are obtained. Finally, the notion of coloured visual secret sharing schemes is introduced and a general construction is given.  相似文献   

16.
In a secret sharing scheme, some participants can lie about the value of their shares when reconstructing the secret in order to obtain some illicit benefit. We present in this paper two methods to modify any linear secret sharing scheme in order to obtain schemes that are unconditionally secure against that kind of attack. The schemes obtained by the first method are robust, that is, cheaters are detected with high probability even if they know the value of the secret. The second method provides secure schemes, in which cheaters that do not know the secret are detected with high probability. When applied to ideal linear secret sharing schemes, our methods provide robust and secure schemes whose relation between the probability of cheating and the information rate is almost optimal. Besides, those methods make it possible to construct robust and secure schemes for any access structure.  相似文献   

17.
It is shown that in some cases it is possible to reconstruct a block design uniquely from incomplete knowledge of a minimal defining set for . This surprising result has implications for the use of minimal defining sets in secret sharing schemes.  相似文献   

18.
The ancient difficulty for establishing a common cryptographic secret key between two communicating parties Alice and Bob is nicely summarized by the Catch-22 dictum of S.J. Lomonaco [1999], to wit: “in order to communicate in secret one must first communicate in secret”. In other words, to communicate in secret, Alice and Bob must already have a shared secret key. In this paper we analyse an algorithm for establishing such a common secret key by public discussion, under the modest and practical requirement that Alice and Bob are initially in possession of keys and , respectively, of a common length which are not necessarily equal but are such that the mutual information is non-zero. This assumption is tantamount to assuming only that the corresponding statistical variables are correlated. The common secret key distilled by the algorithm will enjoy perfect secrecy in the sense of Shannon. The method thus provides a profound generalization of traditional symmetric key cryptography and applies also to quantum cryptography. Here, by purely elementary methods, we give a rigorous proof that the method proposed by Bennett, Bessette, Brassard, Salvail, and Smolin will in general converge to a non-empty common key under moderate assumptions on the choice of block lengths provided the initial bit strings are sufficiently long. Full details on the length requirements are presented. Furthermore, we consider the question of which block lengths should be chosen for optimal performance with respect to the length of the resulting common key. A new and fundamental aspect of this paper is the explicit utilization of finite fields and error-correcting codes both for checking equality of the generated keys and, later, for the construction of various hash functions. Traditionally this check has been done by performing a few times a comparison of the parity of a random subset of the bits. Here we give a much more efficient procedure by using the powerful methods of error-correcting codes. More general situations are treated in Section 8.The research of the first and second authors is supported by grants from NSERC.  相似文献   

19.
In this paper we consider the (t, n)-threshold visual secret sharing scheme (VSSS) in which black pixels in a secret black-white images is reproduced perfectly as black pixels when we stack arbitrary t shares. This paper provides a new characterization of the (t, n)-threshold visual secret sharing scheme with such a property (hereafter, we call such a VSSS the (t, n)-PBVSSS for short). We use an algebraic method to characterize basis matrices of the (t, n)-PBVSSS in a certain class of matrices. We show that the set of all homogeneous polynomials each element of which yields basis matrices of the (t, n)-PBVSSS becomes a set of lattice points in an (nt+1)-dimensional linear space. In addition, we prove that the optimal basis matrices in the sense of maximizing the relative difference among all the basis matrices in the class coincides with the basis matrices given by Blundo, Bonis and De Santis [3] for all nt ≥ 2.  相似文献   

20.
A multi-secret sharing scheme is a protocol to share more than one secret among a set of participants, where each secret may have a distinct family of subsets of participants (also called ‘access structure’) that are qualified to recover it. In this paper we use an information-theoretic approach to analyze two different models for multi-secret sharing schemes. The proposed models generalize specific models which have already been considered in the literature. We first analyze the relationships between the security properties of the two models. Afterwards, we show that the security property of a multi-secret sharing scheme does not depend on the particular probability distribution on the sets of secrets. This extends the analogous result for the case of single-secret sharing schemes and implies that the bounds on the size of the information distributed to participants in multi-secret sharing schemes can all be strengthened. For each of the two models considered in this paper, we show lower bounds on the size of the shares distributed to participants. Specifically, for the general case in which the secrets are shared according to a tuple of arbitrary (and possibly different) access structures, we show a combinatorial condition on these structures that is sufficient to require a participant to hold information of size larger than a certain subset of secrets. For specific access structures of particular interest, namely, when all access structures are threshold structures, we show tight bounds on the size of the information distributed to participants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号