首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This work examines the effect of local active flow control on stability and transition in a laminar separation bubble. Experiments are performed in a wind tunnel facility on a NACA 0012 airfoil at a chord Reynolds number of 130 000 and an angle of attack of 2 degrees. Controlled disturbances are introduced upstream of a laminar separation bubble forming on the suction side of the airfoil using a surface-mounted Dielectric Barrier Discharge plasma actuator. Time-resolved two-component Particle Image Velocimetry is used to characterise the flow field. The effect of frequency and amplitude of plasma excitation on flow development is examined. The introduction of artificial harmonic disturbances leads to significant changes in separation bubble topology and the characteristics of coherent structures formed in the aft portion of the bubble. The development of the bubble demonstrates strong dependence on the actuation frequency and amplitude, revealing the dominant role of incoming disturbances in the transition scenario. Statistical, topological and linear stability theory analysis demonstrate that significant mean flow deformation produced by controlled disturbances leads to notable changes in stability characteristics compared to those in the unforced baseline case. The findings provide a new outlook on the role of controlled disturbances in separated shear layer transition and instruct the development of effective flow control strategies.  相似文献   

2.
The formation and development of hydrodynamic disturbances generated by low-frequency vibrations of a local region on a flat plate behind a rectangular step in separated flow is investigated in a wind tunnel. The results are obtained at a small subsonic flow velocity using the hot-wire anemometry. It is established that the wall vibrations induce separation zone disturbances representing streaky structures accompanied by wave oscillation packets. Laminar boundary layer separation favors the wave packet growth followed by wall flow turbulization.  相似文献   

3.
Effects of 3-D disturbances on a separating flow past a rearward facing step have been studied with emphasis on pressure distributions in the separation and reattachment regions. The results show that the 3-D disturbances to a separating shear layer diminish rapidly and the flow downstream of reattachment appears to have a 2-D global shearlayer structure.  相似文献   

4.
The results of an experimental investigation of the structure of the flow separated from the model of a straight wing with point sources of disturbances (bulges) made on its surface are presented. The variations in the three-dimensional flow pattern are analyzed as functions of the bulge shapes and positions. It is found that the flow can be controlled by means of mounting the bulges downstream of the separation line, in the return flow region, since in this case they hinder large-scale vortex formation in the separation zone. The results obtained show that there is an intimate connection between the vortices and the separation zone as a whole. Impeding the vortex structure formation can result in considerable variations in the separation zone structure, up to its complete disappearance.  相似文献   

5.
Scanning PIV is applied to a laminar separation bubble to investigate the spanwise structure and dynamics of the roll-up of vortices within the bubble. The laminar flow separation with turbulent reattachment is studied on the suction side of an airfoil SD7003 at Reynolds numbers of 20,000–60,000. The flow is recorded with a CMOS high-speed camera in successive light-sheet planes over a time span of 1–2 s to resolve the temporal evolution of the flow in the different planes. The results show the quasi-periodic development of large vortex-rolls at the downstream end of the separation bubble, which have a convex structure and an extension of 10–20% chord length in the spanwise direction. These vortices possess an irregular spanwise pattern. The evolution process of an exemplary vortex structure is shown in detail starting from small disturbances within the separation bubble transforming into a compact vortex at the downstream end of the separation bubble. As the vortex grows in size and strength it reaches a critical state that leads to an abrupt burst of the vortex with a large ejection of fluid into the mean flow.  相似文献   

6.
The development of disturbances of the laminar flow in the separation zone behind a surface projection in the boundary layer on a flat plate has been experimentally investigated. The linear instability characteristics of the separated flow are determined and the interaction between the oscillations growing in the separation zone and the average flow is studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 16–22, January–February, 1990.  相似文献   

7.
Stability of a hypersonic flow in the regions of laminar separation of the boundary layer on a cone–flare model is experimentally studied for a Mach number M = 5.92. Development of natural disturbances and artificial wave packets in the boundary layer and separation region is examined. It is shown that highfrequency disturbances are predominantly amplified in the separation region; the most unstable waves are those propagating with an angle close to 60° to the freestream direction. It is found that separation and reattachment lines are generators of twodimensional disturbances.  相似文献   

8.
Boundary layer transition with and without transitional separation bubbles was investigated on a cylinder in cross flow. Measurements of the pressure distribution and hot-wire measurements within the boundary layer were carried out at two free-stream velocities and with different flow disturbances. The separation bubble reacts very sensitively to changes in inlet turbulence. Tollmien-Schlichting waves were observed in the separated shear layer just before transition, and their frequencies were in good agreement with stability theory. However, correlations concerning bubble length which were fitted using airfoil data are apparently not suitable for describing separation bubbles on cylinders. Finally, measurements in periodically disturbed flow show how the bubble reacts to this type of disturbance.  相似文献   

9.
格栅-空腔流动会引发流场自激振荡现象,产生结构振动及噪声问题.研究此类现象的形成机理对相关设备的减振降噪设计具有重要意义.目前已知这种现象是在流场正逆向两种扰动的耦合作用下形成的,但上述两种扰动的形成机理尚未明确.针对该问题,建立了格栅-空腔流动数值模型,并进行非稳态数值模拟.通过分析压力振荡数据及流场结构演化过程,对...  相似文献   

10.
A three-dimensional Direct Numerical Simulation (DNS) of a laminar separation bubble in the presence of oscillating flow is performed. The oscillating flow induces a streamwise pressure gradient varying in time. The special shape of the upper boundary of the computational domain, together with the oscillating pressure gradient causes the boundary layer flow to alternately separate and re-attach. When the inflow decelerates, the shear layer starts to separate and rolls up. Simultaneously the flow becomes 3D. After a transient period, the phase-averaged reverse flow inside the separation bubble reaches speeds ranging from 20 up to 150% of the free-stream velocity. During these phases, the flow is absolutely unstable and self-sustained turbulence can exist. When the inflow starts to accelerate, a spanwise roll of turbulent flow is shed from the shear layer. Shortly after this, the remainder of the separation bubble moves downstream and rejoins with the shed turbulent roll. During the flow-acceleration phase, a patch of laminar boundary layer flow is obtained. Along the flat plate, a series of turbulent patches of flow travelling downstream, separated by laminar flow can be observed, reminiscent of boundary layer flow in a turbine cascade with periodically appearing free-stream disturbances.  相似文献   

11.
Numerical modeling of the time-dependent supersonic flow over a compression corner with different roundness radii is performed on the basis of the solution of the two-dimensional Navier-Stokes equations in the regimes corresponding to local boundary layer separation. The development of unstable disturbances generated by local periodic injection/suction in the preseparated boundary layer is calculated. The results are compared with those of similar calculations for a flat plate. It is shown that the natural oscillations of the boundary-layer second mode stabilize in the separation zone and grow intensely downstream of the reattachment point. The acoustic modes excited within a separation bubble are studied using numerical calculations and an asymptotic analysis.  相似文献   

12.
We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.  相似文献   

13.
Streamwise distributions of wall shear-stress, reverse-flow-factor and static pressure were measured in the turbulent separation regions upstream and downstream of a two-dimensional fence. In front of the fence, boundary layer profiles were measured with a pulsed-wire probe traversing out of the wall. The flow was then manipulated by a periodic disturbance which was located upstream of the forward separation region. Two different disturbances were tested: an oscillating spoiler and a two-dimensional oscillating jet with zero mean mass flow, driven by a loudspeaker. Both manipulators were orientated parallel to the fence. With appropriate tuning of the parameters, the reattachment length behind the fence could be reduced by 50%.  相似文献   

14.
Particle-tracer technique was employed for visualizing flow structures in a side-inlet square duct. The results obtained indicate that the streamwise vortices developed in the stagnation region of impinging flows are irregularly distributed. As the vortices convect downstream they are first stretched and merged, then squashed due to the non-zero pressure gradient effects caused by the flow separation regions existed along the side walls. The mechanism responsible for generating streamwise vortices in the stagnation region is suggested due to the hydrodynamic instability effect, similar to that previously found for three-dimensional disturbances growing in a two-dimensional stagnation flow.  相似文献   

15.
Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.  相似文献   

16.
The effect of low-frequency disturbances of the three-dimensional separation zone formed in supersonic flow over a sphere with a capped spike on the flow in the forward separation zone has been systematically analyzed on the basis of a large series of experiments. The separation zone was disturbed by rotating the spike about its own axis at various angular velocities. The investigation was carried out using motion-picture records of the flow pattern around the model and the pressure and heat flux distributions on the surface of the sphere.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 185–188, March–April, 1992.  相似文献   

17.
Stability of a supersonic (M = 5.373) boundary layer with local separation in a compression corner with a passive porous coating partly absorbing flow perturbations is considered by solving two-dimensional Navier-Stokes equations numerically. The second mode of disturbances of a supersonic boundary layer is demonstrated to be the most important one behind the boundary-layer reattachment point. The possibility of effective stabilization of these disturbances behind the reattachment point with the use of porous coatings is confirmed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 39–47, March–April, 2007.  相似文献   

18.
A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.  相似文献   

19.
The drag of a sphere at highRe can be reduced to more than half its value by passive ventilation from the stagnation region to the base. Simultaneously, the flow field around the base is stabilized and made symmetric, leading to reduction of unsteady aerodynamic forces. At highRe, the vent flow breaks through the dead water region associated with the near wake and aerodynamically streamlines the base. The streamlining is done by virtue of a base-vortex-ring beyond the point of turbulent boundary layer separation. A mean flow model for the flow around the vented sphere is proposed.Smoke flow visualized on a laser light screen placed at two diameters behind the base of the sphere shows the effectiveness of the method in suppressing the flow oscillations.The drag reduction achieved is very sensitive to the quality of the external surface and relatively insensitive to disturbances in the internal flow. Surface roughness or boundary layer tripping wire on the external flow can completely offset the benefit obtained.  相似文献   

20.
 The spatial-temporal progressions of the leading-edge stagnation, separation and reattachment points, and the state of the unsteady boundary layer developed on the upper surface of a 6 in. chord NACA 0012 airfoil model, oscillated sinusoidally within and beyond the static-stall angle, were measured using 140 closely-spaced, multiple hot-film sensors (MHFS). The MHFS measurements show that (i) the laminar separation point and transition were delayed with increasing α and the reattachment and relaminarization were promoted with decreasing α, relative to the static case, (ii) the pitchup motion helped to keep the boundary layer attached to higher angles of attack over that could be obtained statically, (iii) the dynamic stall process was initiated by the turbulent flow separation in the leading-edge region as well as by the onset of flow reversal in the trailing-edge region, and (iv) the dynamic stall process was found not to originate with the bursting of a laminar separation bubble, but with a breakdown of the turbulent boundary layer. The MHFS measurements also show that the flow unsteadiness caused by airfoil motion as well as by the flow disturbances can be detected simultaneously and nonintrusively. The MHFS characterizations of the unsteady boundary layers are useful in the study of unsteady separated flowfields generated by rapidly maneuvering aircraft, helicopter rotor blades, and wing energy machines. Received: 17 June 1997 / Accepted: 10 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号