首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm?2. In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 % of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA–SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA–MIP-modified electrode occurred with an affinity constant of 100,000 mol?1 L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins.  相似文献   

2.
Self-assembled monolayer of 8-mercaptoquinoline (MQ) on the surface of gold from MQ dilute ethanolic solutions is investigated by electrochemical methods. Some aqueous redox probes, such as ferrocene carboxylic acid and Fe(CN)6 4–/3– can sufficiently diffuse into the monolayer because significant diffusion-limited current peaks are observed when the redox reactions take place, showing that the monolayer is very loosely packed or dominated by defects. However, the study on the electron transfer of other aqueous probes, such as Cu2+ and Ru(NH3)6 3+/2+, confirm that the monolayer can block the electron transfer on the gold electrode surface rather effectively for its low ratio of pinhole defects. These studies show that the MQ monolayer on the electrode can provide an excellent barrier for penetration of some probes but cannot resist the penetration of other probes effectively. The unusual properties of the self-assembled monolayers are attributed to the entity of the very large heterocyclic moiety.  相似文献   

3.
《Electroanalysis》2003,15(22):1756-1761
Mercaptoundecanoic acid (MUA) and glutathione (GSH) self‐assembled monolayers were prepared on gold‐ wire microelectrode. Cyclic voltammetry was used to investigate the influence of temperature on electrochemical behaviors of Fe(CN)63?/4? and Ru(NH3)63+/2+ at these SAMs modified electrodes in aqueous solution. It is found that temperature shows great influence on electron transfer (ET) and mass transport (MT) for the two SAMs modified electrodes and the influence of temperature depends on the charge properties of the redox couples and terminal groups of SAMs and the structure of the monolayer on gold surface. The temperature can greatly increase MT rate of Fe(CN)63?/4? at both MUA and GSH modified electrodes. However, the increased MT rate doesn't have any effect on the CV's for Fe(CN)63?/4? /MUA system. For Ru(NH3)63+/2+ , temperature can greatly improve the electrochemical reaction in both MUA and GSH modified electrodes, which is ascribed to temperature‐induced diffusion and convection and the electrostatic interaction between Ru(NH3)63+/2+ and negatively charged carboxyl groups on the electrode surface.  相似文献   

4.
STM and impedance results of the self‐assembled monolayer (SAM) formed with thionicotinamide (TNA) on gold indicate the presence of defects that increase with the immersion time of the electrode in the TNA solution affecting the SAM electroactivity toward the electron transfer reaction of the cytochrome c metalloprotein and [Fe(CN)6]4? and [Ru(NH3)6]3+ complexes. It was observed that this electroactivity was also affected by the pH of the electrolyte solution. SERS and STM data indicate sulfur coordination to the surface with contribution of the NH2 group. From the dependence of the TNA surface coverage on the temperature and concentration in solution, thermodynamic parameters of adsorption were determined.  相似文献   

5.
Meldola′s blue was immobilized into a self-assembled decanethiol monolayer modified on a gold electrode to provide a biological membrane model for electron transport having a molecular gate. Cyclic voltammograms of ferricyanide at this modified electrode showed only its reduction current at potentials where Meldola′s blue was reduced, but not at the redox potential of ferricyanide itself and no reaction was observed for ferrocyanide, indicating the direction of electron flow was controlled through the functionalized monolayer. Similar electrochemical responses were also observed for both octacyanotungustate and octacyanomolybdate. The cathodic peak currents observed in metal cyanide solutions at the modified electrode decreased in the order of Fe(CN)63− > W(CN)83− > Mo(CN)83− at a given pH. From the analysis of the voltammograms using the microelectrode assembly model, the potential-dependent rectified electron flow was explained in terms of a gate function of Meldola′s blue in the monolayer, and the apparent electron transfer rate constant, k0app, and the apparent diffusion coefficient, Dapp, of metal cyanide ions in the monolayer were also estimated.  相似文献   

6.
This paper describes the development of an amperometric cytochrome c (cyt c)-based biosensor and its later application to the quantification of the scavenging capacity of antioxidants. The enzymatic biosensor was constructed by covalently co-immobilizing both cyt c and XOD on a mercaptoundecanol/mercaptoundecanoic acid (MU/MUA) mixed self-assembled monolayer (SAM)-modified screen-printed gold electrode. The applicability of this method was shown by analyzing the antioxidant capacity of pure substances, such as ascorbic acid and Trolox, and natural sources of antioxidants, particularly 5 orange juices.  相似文献   

7.
Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine‐coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self‐assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl‐terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this “disc” orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi‐reversible redox behavior with rate constant ks values between 0.93 and 2.86 s?1 and apparent formal potentials ${E{{0{^{\prime }}\hfill \atop {\rm app}\hfill}}}$ between ‐131.1 and ‐249.1 mV. On the MUA/MU‐modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.  相似文献   

8.
The electrochemical behavior of cytochrome c (cyt‐c) that was electrostatically immobilized onto a self‐assembled monolayer (SAM) of captopril (capt) on a gold electrode has been investigated. Cyclic voltammetry, scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy were employed to evaluate the blocking property of the capt SAM. SECM was used to measure the bimolecular electron transfer (ET) kinetics (kBI) between a solution‐based redox probe and the immobilized protein. In addition, the tunneling ET between the immobilized protein and the underlying gold electrode was calculated. A kBI value of (5.0±0.6)×108 mol?1 cm3 s?1 for the bimolecular ET and a standard tunneling rate constant (k0) of 46.4±0.2 s?1 for the tunneling ET have been obtained.  相似文献   

9.
The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.  相似文献   

10.
Binary mixtures of 11-mercaptoundecanoic acid (MUA) and other thiols of various lengths and terminal functions were chemisorbed on gold-coated surfaces via S–Au bonds to form mixed self-assembled monolayers (SAMs). Several values of the mole fraction of MUA in the thiol mixtures were tested and the structure and composition of the resulted thin films were characterized by X-ray photoelectron spectroscopy (XPS) and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results made it clear that co-adsorption of MUA with thiols of similar chain length led to well-ordered monolayers whereas the co-adsorption of MUA with shorter thiols yielded less crystalline-like thin films, but with more reactive carboxylic acid terminal groups. This criterion appeared decisive for efficient covalent binding of Staphylococcus aureus Protein A (PrA), a protein that displays high affinity for the constant fragment (Fc) of antibodies of the IgG type from various mammal species. The ability of immobilized Protein A to recognize and bind a model IgG appeared to be optimal for the mixed SAM of MUA and the short-chain, ω-hydroxythiol 6-mercaptohexanol in the proportion 1–3.  相似文献   

11.
Adsorption of 11-mercaptoundecanoic acid (MUA) on silver from methanol and aqueous solutions was monitored in situ by surface-enhanced Raman scattering (SRES) spectroscopy. While adsorption of MUA from methanol is a one-step formation of a thiol-bound monolayer, SERS spectra reveal that monolayer formation from aqueous solution involves interactions of both carboxylate and thiol groups of MUA with the silver surface. Several Raman scattering bands, including the ν(C-S), ν(s)(COO(-)), and ν(C-C), were used to investigate the evolution of the structure of adsorbed MUA on silver surfaces. The time-dependent profiles of these bands for assembly from aqueous solution indicate a multistep process, which is initiated by the binding of both carboxylate and thiol groups to silver, producing a mixture of gauche and trans conformations. In a subsequent step, the COO-Ag interactions are displaced by stronger S-Ag bonds, leading to ordering of the resulting monolayer with formation of a complete SAM with all-trans conformations. The results also showed that the adsorption process depended strongly on the solution pH and surface potential of the metal. These factors can significantly affect the participation and displacement of -COO(-) during self-assembly of MUA from aqueous solution.  相似文献   

12.
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs.  相似文献   

13.
In situ functionalization of a 4‐aminothiophenol (4ATP) self‐assembled monolayer (SAM) on a Au electrode (4ATP/Au SAM) by the Michael addition reaction is considered. Under optimized conditions, the nucleophilic attack of the amino group of 4ATP/Au SAM to give an electrogenerated ortho‐quinone produced a novel electroactive SAM (ESAM). The ESAM could be oxidized to quinone‐imine SAM (QI SAM) for the covalent immobilization of L ‐arginine monolayers. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) spectroscopy are employed to characterize these systems.. The apparent heterogeneous rate constant (ksapp) for ESAM/Au and the rate constant (k′) of the pseudo‐first order Michael addition reaction of L ‐arginine and ESAM/Au are calculated.  相似文献   

14.
2‐Ureido‐4(1H)‐pyrimidinone‐bridged ferrocene–fullerene assembly I is designed and synthesized for elaborating the photoinduced electron‐transfer processes in self‐complementary quadruply hydrogen‐bonded modules. Unexpectedly, steady‐state and time‐resolved spectroscopy reveal an inefficient electron‐transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron‐transfer reactions are thermodynamically feasible. Instead, an effective intra‐assembly triplet–triplet energy‐transfer process is found to be operative in assembly I with a rate constant of 9.2×105 s?1 and an efficiency of 73 % in CH2Cl2 at room temperature.  相似文献   

15.
In this paper, a gold electrode, modified with octabutylthiophthalocyaninato-cobalt(II) self-assembled monolayer (SAM), was used in the detection of l-cysteine in pH=4 buffer. The SAM showed good electrocatalytic activity and increased the electron transfer rate in such a way that mass-transport became the rate determining step of the overall oxidation reaction of l-cysteine. From these data the diffusion coefficient of l-cysteine was calculated and a value of 4.8±1.1×10−5 cm2 s−1 was obtained. The electrode was found to be stable for l-cysteine detection over a period of one month with a detection limit of 3.1±0.8×10−7 mol l−1 if the electrode was stored in a pH=4 buffer. Despite these promising results three effects should be taken into account for potential application: first a memory effect limits the frequency of detection to one per 6 min; secondly the electron tunneling effect limits the current density for mass-transport up to 5 μA cm−2 and finally, the electrode should be activated prior to use for analytical purposes.  相似文献   

16.
The growth kinetics of a self-assembled monolayer (SAM) was measured by decrease in steady-state faradic current related to the formation of an insulating SAM. The steady-state current produced by the oxidation of ferrocene in the presence of a rotating disk electrode decreased by introduction of 11-mercaptoundecanoic acid (MUA) related to formation of an insulating MUA SAM. The time constants derived from fitting the measured current to the rearrange-limited Langmuir model agreed well with previously reported results determined using other techniques, demonstrating that our simple method can reliably characterize SAM adsorption kinetics in situ and real timely.  相似文献   

17.
The electrochemical properties of a gold electrode modified with a mixed thiol monolayer containing both a polar and a non-polar head group have been investigated in aqueous Fe(CN)64−, flavin adenine dinucleotide (FAD) and ubiquinone-0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, UQ0) solutions. The cyclic voltammetric current-potential (i-E) response of Fe(CN)64− was found to be affected considerably by the polarity of the head group contained in the mixed monolayer assembly, as compared with those of FAD and UQ0. It was also found that in the cases of UQ0 and FAD the i-E responses for the modified electrode were affected by their own molecular size rather than the polarity of the mixed monolayer head group. Furthermore, compared with Fe(CN)64− ion, these biologically related molecules are able to permeate readily into the well-organized and hydrophobic alkyl chains of the monolayer assembly. The voltammetric profile of UQ0 was improved by the modification of aminoethanethiol, as compared with those of bare gold and the electrode modified with other polar thiols. Further, two different permeation paths of the electrode species into the mixed monolayer are suggested from the variation of the i-E response with the cycle of the potential scan.  相似文献   

18.
A protein-based electrochemical sensor for hydrogen peroxide (H2O2) was developed by an easy and effective film fabrication method where spinach ferredoxin (Fdx) containing [2Fe–2S] metal center was cross linked with 11-mercaptoundecanoic acid (MUA) on a gold (Au) surface. The surface morphology of Fdx molecules on Au electrodes was investigated by atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to study the electrochemical behavior of adsorbed Fdx on Au. The interfacial properties of the modified electrode were evaluated in the presence of Fe(CN)63?/4? redox couple as a probe. From CV, a pair of well-defined and quasi-reversible redox peaks of Fdx was obtained in 10 mM, pH 7.0 Tris–HCl buffer solution at ?170 and ?120 mV respectively. One electron reduction of the [2Fe-2S]2+ cluster occurs at one of the iron atoms to give the reduced [2Fe-2S]+. The formal reduction potential of Fdx ca. ?150 mV (vs. Ag/AgCl electrode) at pH 7.0. The electron-transfer rate constant, ks, for electron transfer between the Au electrode and Fdx was estimated to be 0.12 s?1. From the electrochemical experiments, it is observed that Fdx/MUA/Au promoted direct electron transfer between Fdx and electrode and it catalyzes the reduction of H2O2. The Fdx/MUA/Au electrode displays a linear increase in amperometric current for increasing concentration of H2O2.The sensor calibration plot was linear with r2 = 0.998 with sensitivity approximately 68.24 μAm M?1 cm?2. Further, the effect of nitrite on the developed sensor was examined which does not interfere with the detection of H2O2. Finally, the addition of H2O2 on MUA/Au electrode was observed which has no effect on amperometric current.  相似文献   

19.
Self-assembled monolayers (SAMs) of thiols with carboxylic acid terminal groups were formed on gold substrates. The electron transfer characteristics of redox species on the above SAM-modified electrodes were studied in acid and neutral media with the help of voltammetry under two different conditions: (1) solution phase electron transfer and (2) bridge mediated electron transfer. Two redox systems, viz., [Fe(CN)6]4-/3− and Ru[(NH3)6]2+/3+ were chosen for the solution phase study. Investigations of bridge mediated electron transfer were carried out by functionalising the SAM with redox moieties and then studying their redox behaviour. For this study, ferrocene carboxylic acid and 1,4-diamino anthraquinone were used and they were linked to carboxylic acid terminated thiols by covalent linkage. The voltammetric results with mercaptoundecanoic acid SAM demonstrate the difference in behaviour between solution phase and bridge mediated electron transfer processes.  相似文献   

20.
The interfacial effects of two bile salts (sodium deoxycholate (NaDC) and sodium dehydrocholate (NaDHC)) in a catanionic mixed adsorbed monolayer have been investigated at 25 °C. The surfactant interfacial composition, the interfacial orientation of the molecules and the energy changes are analysed to show a thermodynamic evidence of the hydrophobic BSs effect during its intercalation into interfacial adsorbed didodecyldimethyl ammonium bromide (DDAB) molecules. Both mixed systems (NaDC–DDAB and NaDHC–DDAB) have analogous adsorption efficiencies, which are similar from a pure DDAB monolayer and superior to that obtained for both bile salts molecules. Nevertheless, their adsorption effectiveness is different: NaDC causes an increment of Γ while NaDHC produces the opposite effect. The adsorption efficiency in surface tension reduction is due to the existence of interfacial synergistic interactions (confirmed by the analysis of β γ and ΔG ad 0 values). Maximum synergistic interaction is seen for α BSs = 0.4. The hydrophobic steroid backbone of NaDHC molecule presents a deep interfacial penetration than NaDC. This fact causes a great disturbance of DDAB hydrocarbon tails and conduces to a large separation of molecules (high A m values) which explains the reduction of adsorption effectiveness (low Γ m values).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号