首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Coordination Chemistry》2012,65(16-18):2814-2830
Abstract

Co(II), Ni(II), and Cu(II) complexes of 2-Amino-5-ethyl-1,3,4-thiadiazole (AET) and 2-Amino-5-(ethylthio)-1,3,4-thiadiazole (AEST) have been synthesized and characterized based on elemental analysis, magnetic susceptibility, infrared (4000–400 cm?1), mass spectrometry (ESI and MALDI), UV–Vis (200–1100 nm) and thermal analysis (TGA/DTA). Molar conductance measurements proved that [M(L)2(H2O)2]Cl2·H2O are electrolytic complexes where M represents Co, Ni, and Cu divalent metal ions. The geometrical isomerism of [M(L)2(H2O)2]2+ ions were investigated by DFT-B3LYP calculations incorporated in Gaussian09 package; it favored the all trans isomers due to having the lowest energy points on the potential energy surface. The outcome of DFT-B3LYP quantum mechanical calculations using 6-31G(d) basis set favor six-coordinate sites via a bidentate ligand through exo amino and adjacent endo thiadiazole nitrogen (N3) donors. These results were consistent with magnetic measurements combined with infrared and UV–Vis spectral interpretations. The predicted metal–ligand binding energies from B3LYP/6-31G(d) calculations follow the trend Cu2+>Ni2+>Co2+, in agreement with the Irving–Williams series. Both AET and AEST ligands and the synthesized complexes were screened for their antibacterial activity and the outcome was high antimicrobial activity of the complexes compared to the free ligands against one or more microbial species and in some cases (copper complexes) higher activity than standard drugs.  相似文献   

2.
Two different metal complexes of [Co(HL)(L)(Ac)2]·4H2O (I) and [Ni2(L)2(Ac)2]·4H2O (II), have been synthesized with newly prepared amine-imine-oxime ligand [HL = 3-(4′-aminobiphenyl-4-ylimino)-butan-2-one oxime, Ac = CH3COO]. This ligand HL was prepared by the condensation of diacetylmonoxime with benzidine. The structure of the ligand and complexes have been proposed by elemental analyses, IR, 1H, and 13C NMR, electronic spectra, magnetic susceptibility measurements, mass spectra, molar conductivity and thermo gravimetric analysis. The molar conductance measurements of the complexes in DMF solution correspond to non electrolytic nature for the complexes. Octahedral and tetrahedral geometries have been determined to the complexes of Co(III) and binuclear Ni(II) respectively. The ligand and its metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive (Bacillus subtilis and Staphylococcus aureus) and one fungal specie (Candida albicans) were found. They were inactive against tested gram negative bacteria. The text was submitted by authors in English.  相似文献   

3.
Coordination behavior of 4,5,6,7-tetrahydro-1H-indazole (H-Ind) with Cu(II), Co(II), and Ag(I) was studied. The ligand affords complexes bearing different geometries depending upon the metal and anion present in the starting salts. Five compounds with different structural perspectives, trans-[CuCl2(H-Ind)4] (1), trans-[CuBr2(H-Ind)4] (2), trans-[Cu(CH3COO)2(H-Ind)2] (3), trans-[CoCl2(H-Ind)4] (4), and [Ag(H-Ind)2]NO3 (5), were obtained. The ligand adopts tetrahydro-1H-indazole isomeric form in Cu(II) and Co(II) complexes and with Ag(I) ion the same ligand adopts tetrahydro-2H-indazole form. In the case of sterically demanding acetate counter ion in contrast to Cl or Br, the Cu(II) ion accepts two equivalents of the ligand and four-coordinated square planar complex was obtained. With AgNO3, the expected complex was obtained. The yield of reactions was >80% and all complexes were obtained as crystalline material from the reaction mixtures. Their structures were determined by X-ray diffraction and all complexes were tested for antibacterial (Enterobacter sakazkii, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniea), antifungal (Aspergillus flavus, Aspergillus fumegatus, Aspergillus nigar, Fusarium oxysporium), and antioxidant (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) activities. The same were also tested as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) .  相似文献   

4.
Summary [MCl2L4] complexes (M = Co or Ni; L = 3-hydroxypyridine) were prepared by the reaction of stoichiometric amounts of 3-hydroxypyridine and MCl2 in EtOH solution. The complexes were chlorinated by passing Cl2 gas through EtOH solutions containing the metal(II) chloride and 3-hydroxypyridine to yield [CoCl2(LCl)2]·2H2O and [NiCl2(LCl)4]·4H2O, respectively. Structural assignments have been inferred from elemental and spectral analyses. Magnetic properties of the complexes are assigned and the electronic transitions are discussed.  相似文献   

5.
Contrary to earlier reports in which no adducts of Co(II) metal ion with 4,6-dimethylpyrimidine-2(1H)-thione(HL) could be isolated starting from Co(ClO4)2 · 6H2O, we now report bis- and tris-ligand Co(II) complexes of the type [Co(HL)2(H2O)2]X2 · H2O (X = ClO4, BF4), [Co(HL)2NO3]NO3, [Co(HL)2SO4] · 0.5H2O and [Co(HL)3]X2 · 0.5H2O (X = ClO4, BF4). They have been synthesized by refluxing 2:1 and 3:1 mixtures of HL and CoX2 · nH2O in ethanol-triethyl orthoformate. We also describe new Co(HL)2X2 · nH2O complexes in which for X2 = ClBr, ClI and BrI, n = 2; for X2 = I2, n = 1 and for X2 = (SCN)2, n = 0. Structural characterization of the complex species is made from electronic and vibrational spectra, magnetic susceptibility measurements in the solid state and conductivity measurements in DMF solution. The magnetic and electronic spectral data together with ligand-field parameters suggest a pseudo-octahedral environment for all the Co(II) complexes, with the exception of Co(HL)2SO4 · 0.5H2O in which the Co(II) ion appears to be pentacoordinated. The IR spectra are consistent with a coordination involving N,S-chelation of the ligand through the non-protonated ring nitrogen atom and the exocyclic sulphur atom.  相似文献   

6.
Zusammenfassung Durch Oxydation von Kobalt(II)salz-Lösungen in Anwesenheit von Dimethylglyoxim und aromatischen Diaminen wurden unter doppelter Umsetzung 41 Salze der [Co(HD)2(o-Phenylendiamin)2]+, [Co(HD)2(m-Phenylendiamin2])+, [Co(HD)2-(2-Methyl-p-phenylendiamin)2]+ und [Co(HD)2(N-Dimethyl-p-phenylendiamin)2]+-Kationen erhalten. Die Koordination von zwei Diaminliganden im Kobalt(III)-bis-dimethylglyoximin-Kern bestätigt dietrans-Konfiguration der [Co(HD)2(Diamin)2]+-Komplexe. Diese Annahme wurde auch durch UR-spektroskopische Untersuchung bestätigt.
On-dioxime complexes of transition metals, XXXVII. Cobalt(III)-dimethylglyoxime complexes with aromatic diamines
The oxidation of cobalt(II) salts in presence of dimethyl-glyoxime and aromatic diamines, has been studied. A series of 41 novel complex salts of the cations [Co(HD)2(o-phenylendiamine)2]+, [Co(HD)2(m-phenylendiamine)2]+, [Co(HD)2(2-methyl-p-phenylendiamine)2]+ and [Co(HD)2(N-dimethyl-p-phenylendiamine)2]+ has been prepared and characterized by means of double decomposition reactions.The coordination of 2 diamine molecules to the Co(III)-dimethylglyoximine-skelet confirms thetrans-configuration of the [Co(HD)2(diamine)2 + complexes.


Mit 2 Abbildungen  相似文献   

7.
Homo Cu(II) and Co(II) binuclear complexes H[MLClMCl2] formed by using the donor properties of the cis two oxygen atoms of the tridentate N-(2-carboxyphenyl)-salicylaldimine Schiff base derived from salicylaldehyde and anthranilic acid have been synthesized. It was found that the Cu(II) “complexed ligand” readily reacts with CoCl2 to form mononuclear Co(II) and binuclear oxygen bridged Co(II) complex [Co2-L2](H2O)2. The structure of the so prepared complexes was investigated using microchemical analysis, molar conductance measurements as well as electronic and vibrational spectral studies. It was concluded that in the Cu(II) binuclear complex, the Cu(II) ion inside the “complexed ligand” has a planar structure while the other Cu(II) ion is distorted away from planarity. In the Co(II) binuclear complex, the Co atom of the “complexed ligand” is distorted from tetrahedral structure when it coordinates to the second Co atom.  相似文献   

8.
Summary Cobalt(II) and nickel(II) complexes of 4-amino-6-methyl-5-oxo-3-phenylamino-1,2,4-triazine (ATAZ), MX2(ATAZ)2 · 2 H2O (M = Co or Ni; X = Cl, Br, I or NCS), have been isolated. The electronic spectra, magnetic moments and i.r. spectra of the compounds have been studied.Pseudo-octahedral environments are proposed for the complexes: [MX2(ATAZ)2]. 2 H2O (M = Ni or Co; X = Cl or Br) and [CoI2(ATAZ)2(H2O)2], and apseudo-tetrahedral structure for [NiX2(ATAZ)2] · 2 H2O (X = I or NCS) and [Co(NCS)2-(ATAZ)2] · 2 H,O. However, [CoX2(ATAZ)2]. 2 H2O (X = Cl or Br) give acetone solutions containing tetrahedral cobalt(II).  相似文献   

9.
The 2-methylimidazole complexes of Co(II), Ni(II), Cu(II) and Zn(II) orotates, mer-[Co(HOr)(H2O)2(2-meim)2] (1), mer-[Ni(HOr)(H2O)2(2-meim)2] (2), [Cu(HOr)(H2O)2(2-meim)] (3) and [Zn(HOr)(H2O)2(2-meim)] (4), were synthesized and characterized by elemental analysis, spectral (UV–Vis and FT-IR) methods, thermal analysis (TG, DTG and DTA), magnetic susceptibility, antimicrobial activity studies and single crystal X-ray diffraction technique. The complexes 1 and 2 have distorted octahedral geometries with two monodentate 2-methylimidazole and one bidentate orotate and two aqua ligands. The complexes 3 and 4 have distorted square pyramidal and trigonal bipyramidal geometry, respectively, with one 2-methylimidazole, bidentate orotate and aqua ligands. The orotate coordinated to the metal(II) ions through deprotonated nitrogen atom of pyrimidine ring and oxygen atom of carboxylate group as a bidentate ligand. The antimicrobial activities of 1 and 4 were found to be more active gram (+) than gram (−) and 4 could be use for treatment Staphylococcus aureus.  相似文献   

10.
2-(2-aminobenzoyl)-N-ethylhydrazine-1-carbothioamide (H3L) and its Cu (II), Co (II), Ni (II) and Zn (II) complexes have been synthesized. The structures of the isolated compounds were suggested based on elemental analyses, spectral analyses (FTIR, 1H and 13CNMR, MS, ESR and UV–Visible) and magnetic moments measurements. The free ligand exists in the keto-thione form, while in the metal complexes; it exists in the enol form and coordinates as mononegative bidentate via deprotonated enolic oxygen and N2H nitrogen. Both Co (II) and Ni (II) complexes have an octahedral, while Cu (II) complex has a square planar geometry. The compounds have direct electronic transitions with optical band gap (Eg) values in the range 3.14–3.40 eV. The ligand and its complexes were optimized using DFT/B3LYP methodology. The ligand optimization results supported the involvement of the carbonyl oxygen, thione sulfur and N2H hydrogen atoms in hydrogen bonding formation. Furthermore, the obtained structures of the ligand and its complexes were subjected to molecular docking study to predict interactions cause their cytotoxicity. Finally, the in vitro cytotoxicity activities of the ligand and its complexes were investigated against Hela and WISH cell lines where the Zn (II) complex exhibited higher activity than the other compounds against the two cell lines in accordance with molecular docking suggestion.  相似文献   

11.
A bidentate NO donor Schiff base, 2-(((2-chloro-5- (trifluoromethyl)phenyl)imino)methyl) phenol ( HL 1 ) and its complexes [Co(L1)2(H2O)2] ( 1 ), [Cu(L1)2] ( 2 ), [Mn(L1)2(H2O)2] ( 3 ), [Ni(L1)2(H2O)2] ( 4 ), [Pd2(L1)2(OAc)2·1.16H2O] ( 5 ), [Pt(L1)2] ( 6 ) were synthesized and characterized by different physico-chemical techniques including elemental and thermal analysis, magnetic susceptibility measurements, molar electric conductivity, IR, 1H-NMR, 13C-NMR, UV–Vis, mass spectroscopies and X-ray powder diffraction (XRD). The molecular structures of ligand HL 1 and two complexes ( 2 and 5 ) were confirmed by X-ray crystallography analysis on the monocrystal. In this complexes, the metal ions are in distorted square-planar environments. The copper (II) complex is mononuclear and crystallized in a monoclinic space group P21/c, whereas palladium (II) complex is dinuclear and crystallized in the trigonal crystal system R-3. The toxicity of the ligand and complexes was evaluated on both plant and animal cells, using the plant species Triticum aestivum L. and the crustacean Artemia franciscana Kellogg. At concentrations up to 100 μM the compounds presented very little toxicity on Artemia franciscana Kellogg. Moreover, the palladium (II) complex was devoid of any toxicity on the plant cells.  相似文献   

12.
The complexes [Co(L)Cl2]Cl · 4H2O (1) and [Co(L)(N3)2]N3 · 2H2O (2) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,01.18,07.12]docosane) have been synthesized, and structurally characterized by X-ray crystallography, spectroscopy and cyclic voltammetry. The crystal structure of (1) is centrosymmetric and the cobalt(III) atom has an axially elongated octahedral geometry with four nitrogen atoms of the macrocycle and two chloride ligands. The cobalt(III) ion in (2) is coordinated to four nitrogen atoms from the macrocycle, and two azide ligands in an octahedral environment, which forms the 1D polymer through hydrogen bonding contacts involving the cation, azide anion and solvent water molecules. Electronic spectra of the complexes also exhibit a low-spin octahedral environment. Cyclic voltammetry of the complexes undergoes a one-electron wave corresponding to Co(III)/Co(II) processes. The electronic spectra and electrochemical behaviors of the complexes are significantly affected by the nature of the axial ligands.  相似文献   

13.
A series of polymeric cobalt(II), nickel(II), zinc(II) and cadmium(II) azido complexes with hydrazine of the type [M(N2H4)(H2O)(N3)Cl]n, [M(N2H4)(N3)2]n and [M(N2H4)2(N3)2]n have been prepared. These were characterized by elemental analyses, magnetic susceptibility measurements, electronic and IR spectra. The complexes are highly insoluble in polar and non polar solvents. All the complexes decompose with explosion at different temperatures between 100°C to 200°C. The magnetic moment and electronic spectral data for Co(II) and Ni(II) complexes suggest that the complexes have octahedral structure. The ligand-field parameters (10 Dq, B, β, β° and LFSE) have also been calculated for all Co(II) and Ni(II) complexes which indicate a significant covalent character of M-L bonds. The IR spectra of the complexes show that the azide group and hydrazine molecule both act as bidentate bridging ligands in [M(N2H4)(H2O)(N3)Cl]n and [M(N2H4)(N3)2]n type complexes but the azide group is terminally bonded to metal in all [M(N2H4)2(N3)2]n type complexes.  相似文献   

14.
N,N′-diethyleneamine bis(salicylideneimine); H2DETS and N,N′-diethyleneamine bis(o-hydroxyacetophenoneimine); H2DETHA have been prepared to produce Mn(II), Co(II) and Ni(II) complexes by the addition of the synthesized Schiff bases to the studied ions under nitrogen. H2DETS and H2DETHA are neutral tridentate in the nitrato complexes and binegative pentadentate in the other complexes. A square pyramidal structure was suggested for all complexes based on elemental analysis, molar conductivity, infrared, electronic spectra and magnetic moment measurements. The oxygen absorption properties were studied for the isolated complexes by considering the solubility, oxygen affinity and stability. [Co(DETS)]·4H2O has the highest affinity. Different concentrations for the Co(II) complex were studied.  相似文献   

15.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

16.
The spin-crossover (SCO) and charge-transfer (CT) phenomena, the switching processes between two distinguishable magnetic states, are promising for developing materials capable of sophisticated memory and sensing functionalities. The majority of SCO systems are based on iron(II) complexes. However, cobalt(II)-2,2′:6′,2′′-terpyridine (terpy) systems emerge as a promising alternative. In this work, new complex salts [CoII(terpy)2]2[MoIV(CN)8] ⋅ 15H2O, Co2Mo (H2O), and [CoII(terpy)2]3[WV(CN)8]2 ⋅ 12H2O, Co3W2 (H2O) were synthesized and physiochemically characterized. Structural studies for both compounds revealed [Co(terpy)2]2+ layers pillared by octacyanidometallate anions and completed with water molecules between them. Magnetic studies confirmed that the (de)solvated phases of both complexes exhibit partial SCO on the cobalt(II) centers: CoII−LS (SCo(II)-LS=1/2)↔CoII−HS (SCo(II)-HS=3/2). Moreover, handling dehydrated samples in a high-humidity environment leads to partial recovery of previous magnetic properties via humidity-induced SCO for Co2Mo : CoII−HS→CoII−LS, and the new phenomenon of isothermal humidity-activated charge-transfer-induced spin transition, which we define here as HACTIST, for Co3W2 : CoII−HS⋅⋅⋅WV (SCo(II)-HS=3/2 and SW(V)=1/2)→CoIII−LS⋅⋅⋅WIV (SW(IV)=0 and SCo(III)-LS=0). These comprehensive studies shed light on the water-solvation-dependent spin transitions in Co(II)-octacyanidometallate(IV/V) complexes.  相似文献   

17.
18.
New zinc (II), copper (II), nickel (II) and cobalt (III) complexes, [Zn (HL)2]I2 (1) , [Cu (HL)Cl2] (2) , [Cu (HL)Br2] (3) , [Cu (HL)(H2O)2](ClO4)2 (4) , [Ni (HL)2]I2·H2O (5) , [Co(L)2]Cl (6) , [Co(L)2]NO3 (7) , [Co(L)2]I·[Co(L)2](I3) (8) were obtained with 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone ( HL ). The isothiosemicarbazone ligand was characterized by NMR (1H and 13C), IR spectroscopy and X-ray diffraction. All the complexes were characterized by elemental analysis, IR, UV–Vis, ESI-MS spectroscopy, molar conductivity, magnetic susceptibility measurements. X-ray diffraction analysis on the monocrystal and powder elucidated the structure of the complexes 1 , 5 , 7 and 8 . The ligand and the complexes were tested for their antioxidant and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Candida albicans. Also, the antiproliferative properties of these compounds on human leukemia HL-60, human cervical epithelial HeLa, human epithelial pancreatic adenocarcinoma BxPC-3, human muscle rhabdomyosarcoma spindle, large multinucleated RD cells and normal MDCK cells have been investigated. The nickel complex 5 and cobalt complexes 6 , 7 showed promising antiproliferative activity and low toxicity.  相似文献   

19.
Piperanol thiosemicarbazone (HL) has been interacted with Ag+, Co(II), Ni(II) or Cu(II) binary to produce [Ag(HL)]EtOH · NO3, [Ag2(L)(H2O)2]NO3, [Co(L)3], [Cu(L)(H2O)3(OAc)]H2O or [Ni(L)2] and template with Ag+ to form [Cu2Ag2(L)2(OH)2(H2O)4]NO3 and [NiAg(L)2(H2O)2]NO3. The prepared complexes are characterized by microanalysis, thermal, magnetic and spectral (IR, 1H NMR, ESR and electronic) studies. Ag+ plays an important role in the complex formation. The variation in coordination may be due to the presence of two different metal ions and the preparation conditions. The outside nitrate is investigated by IR spectra. The outer sphere solvents are detected by IR and thermal analysis. Ni(II) complexes are found diamagnetic having a square-planar geometry. Cu(II) is reduced by the ligand to Cu(I). The cobalt complex is found diamagnetic confirming an air oxidation of Co(II) to Co(III) having a low spin octahedral geometry. The ligand and its metal complexes are found reducing agents which decolorized KMnO4 solution in 2N H2SO4. CoNS and NiNS are the residual parts in the thermal decomposition of [Co(L)3] and [Ni(L)2].  相似文献   

20.
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclopropanedicarboxylic acid (H2-cpdc) generates one-dimensional hydrogen-bonded infinite chains [Ni(L)(H-cpdc)2] (1) and [Cu(L)(H-cpdc)2] (2) (H-cpdc = cyclopropane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structures of (1) and (2) show a distorted octahedral coordination geometry around the metal ion, with four secondary amines and two oxygen atoms of the H-cpdc ligand at the trans position. Complexes (1) and (2) display the one-dimensional hydrogen-bonded infinite chains. The cyclic voltammogram of the complexes display two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cpdc ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号