首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new nickel(II) complexes, {[Ni(L)(4,4′-bpdc)] · 3H2O} n (1) and {[Ni(L)(2,6-ndc)] · 2CH3CN} n (2) (L = 1,8-dihydroxylethyl-1,3,6,8,10,13-hexaazacyclotetradecane, 4,4′-bpdc = 4,4′-biphenyldicarboxylate, 2,6-ndc = 2,6-naphthalenedicarboxylate), have been synthesized and structurally characterized by spectroscopic and X-ray diffraction methods. Compound 1 shows a 3-D supramolecule which is composed of two different series of 1-D coordination polymers, where each 1-D chain runs in different directions and interacts by π–π stacking at the intersection. Compound 2 contains 1-D coordination polymers in which 1-D chains run in the same direction. The 1-D chains are interconnected by hydrogen bonds in an undulated fashion to form a 3-D supramolecule.  相似文献   

2.
Four Cd(II)- and Cu(II)-containing coordination polymers (CPs) based on a multidentate N-donor ligand and varied dicarboxylate anions, [Cd(3,3′-tmbpt)(p-bdc)]·2.5H2O (1), [Cd(3,3′-tmbpt)(m-bdc)]·2H2O (2), [Cu(3,3′-tmbpt)(m-bdc)]·H2O (3), and [Cu(3,3′-tmbpt)(p-bdc)]·2H2O (4), where 3,3′-tmbpt = 1 ? ((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole, p-H2bdc = 1,4-benzenedicarboxylic acid, and m-H2bdc = 1,3-benzenedicarboxylic acid, have been prepared hydrothermally. The structures of the compounds were determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra and elemental analyses. Compound 1 exhibits a 3-D twofold interpenetrating framework with a 65·8 CdSO4 topology. Compound 2 is a 2-D layer containing meso-helical chains with a 44·62 sql topology. Compound 3 shows a 1-D → 3-D interdigitated architecture while 4 displays a 2-D → 3-D interdigitated architecture. The structural differences of the compounds indicate that the dicarboxylate anions and the central metal ions play important roles in the resulting structures of CPs. Optical band gaps and solid-state photoluminescent properties have also been studied.  相似文献   

3.
The present study reports application of biphenyl-3,5-dicarboxylic acid (H2L) as a versatile building block for synthesis of d10 metal coordination polymers (CPs). Five Cd(II) and Zn(II)-containing CPs based on N,N-donor ancillary ligands, [Cd23-L)22-4,4′-tmbpy)(MeOH)] (1), [Cd(μ2-L)(2,2′-bpy)(H2O)]·n(MeOH) (2), [Cd(μ2-L)(dipt)] (3), [Cd(μ3-L)(phen)]·nH2O (4), and [Zn(μ2-L)(μ2-4,4′-tmbpy)]·nH2O (5) {4,4′-tmbpy = 4,4′-trimethylenedipyridine, 2,2′-bpy = 2,2′-bipyridine, dipt = 2,9-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline} have been prepared under solvothermal conditions. 15 have been characterized by single crystal X-ray diffraction, elemental analysis, infrared (IR) spectra, and powder X-ray diffraction (PXRD). Complex 1 exhibits a three-dimensional (3-D) framework with a rare fsc-3,4-I41/amd topology. Complexes 24 show one-dimensional (1-D) structures. Complex 5 features a two-dimensional (2-D) layer structure with a sql topology. The structural and topological diversity of 15 are mainly attributed to the effect of the N,N-donor ancillary ligand. Solid-state luminescent properties and thermal stabilities of the obtained products have been investigated.  相似文献   

4.
Two coordination polymers, [Ba(H2L)(H2O)]n·nH2O (1) and [La(HL)(H2O)]n·nH2O (2) (Na2H2L = 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt), have been synthesized under hydrothermal conditions. The central metal ions are nine-coordinate with distorted tricapped trigonal prismatic arrangements. Compounds 1 and 2 have 3-D metal–organic framework (MOF) structures which are created by 2-D inorganic layers [Ba2S2O5]n and [La2S2O5]n through organic phenyl moieties of HL3? linkages. The inorganic layers and organic pillars are alternately arranged to generate the 3-D pillared-layered open frameworks with (411, 64) topologies. Results of fluorescence measurements reveal that two decayed emission bands centered at 435 and 408 nm may be caused by interactions of the ligands and the metal ions. The respective luminescence emission peaks appear at different wavelengths and intensities, which can be affected by the metal ions.  相似文献   

5.
Reactions of Zn(II) salts, 5-(4-(1H-imidazol-1-yl)phenyl)-1H-tetrazolate (HIPT) and 2-mercaptobenzoic acid or 2-propyl-1H-imidazole-4,5-dicarboxylic acid (H3PrIDC), result in two mixed-ligand coordination polymers (CPs), [Zn2(IPT)(DSDB)(OH)]n (H2DSDB = 2,2′-disulfanediyldibenzoic acid, 1) and [Zn2(IPT)(PrIDC)(H2O)]n (H3PrIDC = 2-propyl-1H-imidazole-4,5-dicarboxylic acid, 2). Compound 1 possesses a 2-D structure built by 1-D [Zn(IPT)]n chains and DSDB2? connectors, in which the DSDB2? is generated via in situ reaction from 2-mercaptobenzoic acid. It displays a new intricate 4-nodal {3·4·6·7·8·9}{3·6·7·8·9·10}{3·8·9}{4·6·8} topology. Compound 2 displays a 3-D framework with new 3-connected topology with Schläfli symbol of (4·8·10) (8·122), in which the 1-D Zn-carboxylate chains were bridged by 3-connected IPT? ligands. The thermal stabilities and luminescence properties of 1 and 2 have also been studied. The compounds exhibit intense solid-state fluorescent emissions at room temperature.  相似文献   

6.
Two new 3-D complexes, [M(L)(4bpy)0.5(H2O)] [M = Cd (1) and = Zn (2)], based on mixed 1,1-cyclobutanedicarboxylic acid (H2L) and 4,4′-bipyridine (4bpy) have been synthesized; 1 and 2 feature (3,4)-connected (63)(65.8) topological networks consisting of pillared 2-D [M(L)(H2O)] layered motifs. Complexes 1 and 2 are photoluminescent materials.  相似文献   

7.
Two pairs of isostructural transition metal coordination polymers, {[Co(L)(H2O)]n} (1) and {[Zn(L)(H2O)]n} (3), {[Co(L)(4,4′-bipy)(H2O)]·H2O}n (2) and {[Zn(L)(4,4′-bipy)(H2O)]·H2O}n (4) (H2L = N-pyrazinesulfonyl-glycine acid and 4,4′-bipy = 4,4′-bipyridine), have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental and thermogravimetric analyses. The structures show that 1 and 3 display 2-D polymeric grid frameworks with a 3-connected (4, 82) topology. 2 and 4 also exhibit a 2-D polymeric grid structure, but are constructed by a 4-connected (4, 4) topology. The adjacent 2-D polymeric grid frameworks for 1–4 are further linked by hydrogen bonding O–H?O interactions to form 3-D supramolecular interweaved orderly networks. The fluorescent properties of 3 and 4 were investigated in the solid state.  相似文献   

8.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

9.
Three zinc(II) benzenedicarboxylate coordination polymers, {ZnII(L1)(phen)(H2O)} n (1), {[ZnII(L2)(phen)]2} n (2), and {[ZnII(L3)(phen)(H2O)]} n (3) (L1?=?1,4-benzenedicarboxylic dianion, L2?=?1,3-benzenedicarboxylic dianion, L3?=?1,2-benzenedicarboxylic dianion, and phen?=?1,10-phenanthroline), have been synthesized by self-assembly. Structural analyses of 13 reveal that the compounds are one-dimensional (1-D) chains. However, the structural motifs for 13 are distinct from each other, where 1 forms 1-D zig-zag chains, 2 is in 1-D ladder-like motif, and 3 is a 1-D helical form. Compounds 13 exhibit photoluminescence with emission maxima at ca 371, 392, and 375?nm, respectively.  相似文献   

10.
Three Zn(II) complexes, [Zn2(bpp)2(FNA)2]·H2O (1), [Zn(bpp)(FNA)]·H2O (2), and Zn2(bpp)2(FNA)2 (3) (bpp = 1,3-bi(4-pyridyl)propane, H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesized and characterized by single-crystal and powder X-ray diffraction methods, IR spectroscopy, TG analyses, elemental analyses, and fluorescent analysis. In 1, the Zn(II) ions are linked by FNA anions and bpp into 2-D layers. The Zn(II) ions in 2 are bridged by FNA anions into chiral chains, which are interlinked by bpp into 3-D metal–organic framework with (65·8) CdS topology. Complex 3 features 1-D zigzag chains, which are interconnected by bpp ligands to give a 3-D framework with (6·74·8)(64·7·8) topology. Complexes 2 and 3 exhibit significant ferroelectric behavior (for 2 remnant polarization Pr = 0.050 μC cm?2, coercive field Ec = 1.13 kV cm?1, saturation of the spontaneous polarization Ps = 0.239 μC cm?2; for 3 Pr = 0.192 μC cm?2, Ec = 4.64 kV cm?1, Ps = 0.298 μC cm?2).  相似文献   

11.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

12.
Four Ru(II) complexes with tridentate ligands viz. (4-hydroxy-N′-(pyridin-2-yl-ethylene) benzohydrazide [Ru(L1)(PPh3)2(Cl)] (1), N′-(pyridin-2-yl-methylene) nicotinohydrazide [Ru(L2)(PPh3)2(Cl)] (2), N′-(1H-imidazol-2-yl-methylene)-4-hydroxybenzohydrazide [Ru(L3)(PPh3)2(Cl)] (3), and N′-(1H-imidazol-2-yl-methylene) nicotinohydrazide [Ru(L4)(PPh3)2(Cl)] (4) have been synthesized and characterized. The methoxy-derivative of L3H (abbreviated as L3H*) exists in E configuration with torsional angle of 179.4° around C7-N8-N9-C10 linkage. Single crystal structures of acetonitrile coordinated ruthenium complexes of 1 and 3 having compositins as [Ru(L1)(PPh3)2(CH3CN)]Cl (1a) and [Ru(L3)(PPh3)2(CH3CN)]Cl (3a) revealed coordination of tridentate ligands with significantly distorted octahedral geometry constructed by imine nitrogen, heterocyclic nitrogen, and enolate amide oxygen, forming a cis-planar ring with trans-placement of two PPh3 groups and a coordinated acetonitrile. Ligands (L1H-L4H) and their ruthenium complexes (1–4) are characterized by 1H, 13C, 31P NMR, and IR spectral analysis. Ru(II) complexes have reversible to quasi-reversible redox behavior having Ru(II)/Ru(III) oxidation potentials in the range of 0.40–0.71 V. The DNA binding constants determined by absorption spectral titrations with Herring Sperm DNA (HS-DNA) reveal that L4H and 1 interact more strongly than other ligands and Ru(II) complexes. Complexes 1–3 exhibit DNA cleaving activity possibly due to strong electrostatic interactions while 4 displays intercalation.  相似文献   

13.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

14.
Three pyrrolyl-substituted triaryltriazoles, 3-(N-methyl-2-pyrrolyl)-4-(p-R-phenyl)-5-(2-pyridyl)-1,2,4-triazole (L1: R = MeO; L2: R = Cl; L3: R = Br), and their mononuclear iron(II) complexes, trans-[Fe(L1–3)2(NCS)2]?2MeOH (1: L1; 2: L2; 3: L3), have been synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray crystallography. Crystallographic studies revealed that 13 are isomorphous and crystallize in the triclinic space group P-1. All the complexes have a similar octahedral [FeN6] core with two trans-NCS? ions. Each ligand adopts a chelating bidentate coordination mode via the pyridyl N and one N of the triazole. Intermolecular O–H?O hydrogen bonding and C–H?π interactions link the molecules of 13 to form a 1-D chain or 2-D framework. Variable-temperature magnetic susceptibility measurements indicated that all the complexes remained in a high-spin state from 1.8 to 300 K and had a weak antiferromagnetic interaction.  相似文献   

15.
16.
Three new Zn(II) complexes, [Zn(ox)(imb)] (1), [Zn2(mal)2(imb)2] (2), and [Zn(suc)(imb)]·H2O (3) (imb = 2-(1H-imidazolyl-1-methyl)-1H-benzimidazole, H2ox = oxalic acid, H2mal = malonic acid, H2suc = succinic acid), have been synthesized and structurally characterized. Complex 1 is a 3-D framework with a 4-connected diamond topology with the topological notation of 66. Complex 2 exhibits 2-D layers with (6,3) networks. Complex 3 displays a 3-D framework constructed through unusual 2-D → 3-D parallel interpenetration of corrugated 2-D (6,3) networks. IR spectra, PXRD patterns, thermogravimetric curves, and photoluminescence spectra are addressed.  相似文献   

17.
Three ternary copper(II) complexes [Cu(L1)(phen)] (1), [Cu(L2)(phen)] (2), and [Cu(L3)(phen)]·2H2O (3) (L1 = 4-fluoro-2-(picolinamido)benzoic acid, L2 = 4,5-difluoro-2-(picolinamido)benzoic acid, L3 = 4,5-difluoro-2-((2-hydroxybenzylidene)amino)benzoic acid, phen = 1,10-phenanthroline) have been synthesized and characterized by physicochemical and spectroscopic methods. In addition, X-ray crystallography showed that the Cu atoms in each of the complexes are five-coordinate, adopting distorted square pyramidal or trigonal bipyramidal geometries. The interactions of the complexes with calf-thymus DNA were investigated by UV absorption, fluorescence spectroscopy and viscosity measurements. In addition, the complexes were screened for in vitro cytotoxicity against A549 (human pulmonary carcinoma cells), Jurkat (human T lymphocyte cell line) and HepG-2 (human liver hepatocellular carcinoma cells); these experiments showed that complex 3 exhibited the most effective cytotoxicities (IC50 = 1.224–7.099 µM). Antibacterial studies revealed that complex 3 also exhibited highest activity, consistent with the DNA binding affinities.  相似文献   

18.
Four new cobalt(II)-based metal–organic coordination polymers, namely {[Co(L)(ox)]·3H2O}n (1), [Co2(L)(chda)2]n (2), {[Co(L)(mip)(H2O)]·H2O}n (3) and [Co(L)(oba)]n (4), [L = N,N′-bis(pyridine-3-yl)pyridine-3,5-dicarboxamide, H2ox = oxalic acid, H2chda = trans-1,4-cyclohexanedicarboxylic acid, H2mip = 5-methylisophthalic acid, H2oba = 4,4′-oxybis(benzoic acid)] were hydrothermally synthesized and structurally characterized by IR, TG, PXRD and single-crystal X-ray diffraction. In 1, the oxalate anions display μ 2-bridging mode connecting the adjacent 1D [Co–L]n zigzag chains to afford a 2D layer. In 2, the chda anions take the μ 4-bridging mode connecting the neighboring four CoII ions to construct a [Co–chda]2n 1D double chain, which contains the Co2(CO2)4 paddle-wheel subunit. These double chains are further linked by L ligands to furnish a 2D layer. In 34, Co(II) ions are linked by L ligands to give rise to a 1D left-, right-helical chain [Co–L]n, respectively. These helical chains are further linked by μ 2-bridging mip and oba anions to furnish a 2D network, respectively. The Co(II) ions, L ligands and dicarboxylates exhibit different coordination modes and conformations. The effect of organic dicarboxylates with different rigidity and length on the structures of the Co(II) complexes is discussed. The fluorescence, electrochemical behaviors and photocatalytic activities of the title complexes are reported.  相似文献   

19.
Two new coordination polymers with an asymmetric dicarboxylate and 4,4′-bipyridine ligand, {[Co(bpy)(H2O)4]·(cpa)·0.5H2O}n (1) and {[Ag(cpa)(bpy)][Ag(bpy)]·4H2O}n (2) (H2cpa = 4-(2-carboxyethyl)benzoic acid, bpy = 4,4′-bipyridine), have been hydrothermally synthesized and characterized by elemental analysis, FT-IR spectroscopy, and single-crystal X-ray diffraction. Compound 1 displays a linear chain with guest molecule (cpa)2? ions existing in the structure. Compound 2 contains two independent units, [Ag(cpa)(bpy)] (A) and [Ag(bpy)]+ (B), which form a 1-D + 1-D structure. A shows a 1-D chain structure bearing hooks formed by the carboxylates and organized into a tubular structure by hydrogen-bonding interactions. B has linear chains formed from Ag+ and bpy. The A and B chains co-crystallize with waters of crystallization to provide two linear [Ag(bpy)]+ chains embedded in the tubular structure formed by A via π…π stacking contacts. In 1 and 2, hydrogen-bonding and π…π stacking interactions connect the discrete 1-D chains into 3-D supramolecular structures. The fluorescent properties, TG analysis, and X-ray powder diffraction patterns for 1 and 2 were also measured.  相似文献   

20.
Four Ag(I) complexes, [Ag(L1)2](NO3) (1), [Ag(L2)(NO3)] (2), [Ag(L3)3](NO3) (3), and [Ag(L4)2](NO3) (4), with ligands derived from halo-containing cyanoanilines (L1 = 4-amino-3fluorobenzonitrile, L2 = 4-amino-3-chlorobenzonitrile, L3 = 4-amino-3-bromobenzonitrile, L4 = 4-amino-2-bromobenzonitrile) were synthesized and characterized by C, H, and N elemental analysis, IR and 1H NMR spectroscopy and single crystal X-ray diffraction. Complexes 14 crystallized in the triclinic space group C2/c, P2(1)/n, P-1 and C2/c, respectively. In 1 and 4, Ag+ is four-coordinate with L1 or L4 to form 1-D {[Ag(L1/L4)2]+} polymeric cations. In 2, Ag+ is three-coordinate by two L2 ligands and one NO3? ligand to form a 1-D {[Ag(L2)(NO3)]} zigzag chain. In 3, Ag+ is four-coordinate by L3 to form a dinuclear [Ag(L3)3]+ cation. The NO3? is a 4-connector bridging group in 1 and 3 and a 5-connector bridging group in 2 and 4. The intermolecular hydrogen bonds and Ag?O weak interactions play important roles in forming 3-D networks of 14. The antibacterial activities for 14 were evaluated against Bacillus subtilis, Staphylococcus aureus and Escherichia coli with MTT method. The antibacterial results indicated that 2 showed the best inhibitory activity against the test bacterial strains, and was as potent as chloramphenicol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号