首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of benzophenone chromospheres and zinc(II) phthalocyanine dichromophores labeled poly (aryl benzyl ether) dendrimer (Gn-DZnPc(BP)8n, n = 1?2) were synthesized. Their structures were characterized by elemental analysis, 1H NMR, IR, UV–vis and matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF MS). Their photophysical properties were examined by steady-state and time-resolved fluorescence methods. Both the poly (aryl benzyl ether) dendrimer and BP terminal chromophores had a significant effect on photophysical properties of the zinc(II) phthalocyanine core. Time-resolved spectroscopic measurements indicated that the lifetime of benzophenone (donor) chromophore was longer than that of the zinc(II) phthalocyanine (acceptor). The fluorescence of the peripheral benzophenone chromophores was quenched by the phthalocyanine group attached to the focal point. All of these observations suggest that an intramolecular singlet energy transfer occurs in Gn-DZnPc(BP)8n molecules. The light-harvesting abilities of these molecules increased with generations due to an increase in the number of benzophenone chromophores. The energy transfer efficiencies were ca. 0.49 and 0.68 for generations 1 and 2, respectively, and the rate constants of the singlet-singlet energy transfer were ca. 108 s?1. The rate constants changed inconspicuously with increase of dendron generations. The intramolecular singlet-singlet energy transfer is proposed to proceed mainly via a Förster-type interaction mechanism involving the dendrimer backbone as a scaffold to hold the peripheral benzophenone chromophores and the phthalocyanine core together. This dendrimer was an effective new energy transmission complex with high efficiency and could be used as a potential light-harvesting system.  相似文献   

2.
Abstract

We have synthesized a new phthalonitrile with different substituents in 4- and 5-positions (1). Cyclotetramerization of 1 yielded phthalocyanines with cobalt(II) (2), zinc(II) (3), gallium(III)chloride (4), and indium(III)chloride (5) containing diethylamino-phenoxy and hexylsulfanyl substituents on each benzene unit. Elemental analyses, Fourier transform infrared spectra, 1H-nuclear magnetic resonance spectra, mass spectra, and ultraviolet-visible spectra were used for characterization of the phthalocyanines. The aggregation behavior of the zinc phthalocyanine derivative was studied in different concentrations. Also four chloro and four diethyllaminophenoxy substituted zinc phthalocyanine (6) and octa-diethylaminophenoxy substituted zinc phthalocyanine (7) were synthesized. These phthalocyanines (3, 6, and 7) were compared for electronic absorption spectra, fluorescence quantum yields, fluorescent lifetimes, and fluorescence quenching in the presence of benzoquinone. The fluorescence quantum yield gives the efficiency of the fluorescence process. The fluorescence lifetime is an important parameter for practical applications of fluorescence such as fluorescence resonance energy transfer and fluorescence-lifetime imaging microscopy.  相似文献   

3.
Abstract

Synthesis and characterization of (E)-4-((5-bromo-2-(λ1-oxidanyl)benzylidene)amino)-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (1), its substituted phthalonitrile derivative (2), and its tetra substituted zinc(II) phthalocyanine complex (3) were performed. Compounds 1, 2, and 3 were characterized by methods such as elemental analyses, FT-IR, 1H-NMR, 13C-NMR (except for 3), and MALDI-TOF mass spectra. The photophysical and photochemical properties of this substituted zinc(II) phthalocyanine complex aimed to be used as a photosensitizer were investigated in DMSO solution for determination of their photosensitizing abilities in photocatalytic applications such as photodynamic therapy (PDT). The influence of the substituent as a bioactive compound on the phthalocyanine skeleton on spectroscopic, photophysical, and photochemical properties were also determined and compared with unsubstituted zinc(II) phthalocyanine and some zinc(II) phthalocyanines containing different substituents previously studied. According to photophysical and photochemical investigations, 3 has potential as a photosensitizer for PDT.  相似文献   

4.
The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6–31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.  相似文献   

5.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A phthalocyanine (4) with four salicylhydrazone ligating groups that are directly linked through oxygen bridges to the macrocyclic core has been synthesized by condensation of tetrakis(4-formylphenoxy)phthalocyaninato zinc(II) (3) with salicylhydrazine. Salicylhydrazine was crystallized in methanol during the synthetic procedure. The crystal structure has triclinic space group P-1 with a = 5.8292(6) Å, b = 7.3039(7) Å, c = 17.9798(18) Å, α = 84.272(8)°, β = 89.184(8)°, γ = 81.469(8)°, and Z = 4. Intramolecular O–H?O and intermolecular O–H?O, N–H?N, N–H?O hydrogen bonds were determined in the crystal structure. In addition, there is a weak C–H?π interaction. Complexation on the periphery to yield tri-nuclear Zn(II)Pcs (57) was performed through the reaction of a Schiff base-substituted phthalocyanine (4) with MnCl2·4H2O, CoCl2·6H2O, or Ni(OAc)2 salts. Fourier transform infrared, 1H NMR, 13C NMR, UV–Vis, ICP-OES (inductively coupled plasma optical emission spectroscopy), mass spectroscopies, and elemental analyses were applied to characterize the prepared compounds. Bleach catalyst activity of the prepared phthalocyanine complexes (57) was examined by the degradation of morin and curcumin, respectively. The catalysts had better activity for color removing in solutions at ambient temperature than to that of tetraacetylethylenediamine (TAED).  相似文献   

7.
4,5-Bis(2-(4-(4-methoxybenzylamino)-5-oxo-3-p-tolyl-4,5-dihydro-1H-1,2,4-triazol-1-yl)ethoxy)-substituted zinc(II) phthalocyanine (4) was synthesized from a phthalonitrile derivative (3). The compounds were characterized by several spectral methods such as electronic absorption, FT-IR, 1H NMR, 13C NMR, mass spectrometry, and elemental analyses. The photophysical and the photochemical properties of 4 were investigated in DMSO and DMF. The solvent effect on the photochemical and photophysical properties for 4 is also discussed.  相似文献   

8.
Abstract

Methoxy-isoporphyrins of zinc [5,10,15,20-tetrakis(4-sulfonatophenyl)]porphyrin, ZnTSPP (1a) and zinc [5,10,15,20-tetrakis(4-carboxyphenyl)]porphyrin, ZnTCPP (1b) have been synthesized and characterized using standard spectroscopic techniques (Uv-visible, 1H NMR) , ESI-mass spectrometry and powder X-ray diffraction studies. The isoporphyrins [5-(methoxy)-5,10,15,20-tetrakis(4-sulfonatophenyl)-5H,15H-porphinato]zinc(II) (2a) and [5-(methoxy)-5,10,15,20-tetrakis(4-carboxyphenyl)-5H,21H-porphinato]zinc(II) (2b) are formed due to nucleophilic attack of the methanol to the zinc porphyrin dication. Ceric ammonium nitrate (CAN) was used to oxidize zinc porphyrin and to form zinc porphyrin dication. The electronic spectra of the isoporphyrin complexes 2a and 2b exhibit an intense peak at near IR region . Electrochemical measurements of the synthesized isoporphyrins showed a typical irreversible reduction peak at lower potential. S-containing nucleophiles, which work as reducing agents, convert the zinc isoporphyrins to their parent porphyrins, which supports the electrochemical observations. Their structural properties have been studied using powder X-ray diffraction. The luminescence properties of isoporphyrins were compared with the parent zinc porphyrins.  相似文献   

9.
Mononuclear and trinuclear zinc(II) complexes (1 and 2) with tridentate NNO Schiff-base ligands (HL1?=?N-2-pyridiylmethylidene-4-chloro-2-hydroxy-phenylamine, HL2?=?N-2-pyridiylmethylidene-2-hydroxy-5-chloro-phenylamine) have been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis. The binding properties of zinc(II) complexes with calf thymus DNA (CT-DNA) and HSA were investigated by UV–visible, fluorescence, and circular dichroism spectra. The zinc(II) complexes bind significantly to CT-DNA by intercalation and bind to protein HSA through a static quenching mechanism. The in vitro cytotoxicity of the complexes on human tumor cells lines was assessed by 3-(4,5-dimathylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Hoechst 33258 staining experiments.  相似文献   

10.
The synthesis and characterization of peripherally tetra-biphenyl-4-yl-methoxy substituted metal-free (4), Ni(II) (5), Cu(II) (6), Zn(II) (7), Co(II) (8) and Pb(II) (9) phthalocyanine derivatives are reported. These new phthalocyanine derivatives show the enhanced solubility in organic solvents and they have been characterized by a combination of IR, 1H NMR, 13C NMR, UV–vis, mass spectral data, elemental analysis and thermal analysis methods (TG/DTA). The photophysical (fluorescence quantum yield and lifetime) and photochemical (singlet oxygen generation and photodegradation quantum yield) properties of tetra-biphenyl-4-yl-methoxy substituted zinc (II) phthalocyanine derivative (7) are also investigated. The fluorescence of this phthalocyanine derivative (7) is effectively quenched by addition of 1,4-benzoquinone (BQ).  相似文献   

11.
5,6‐bis(4‐methylphenyl)‐2,3‐dihydro‐1,2,3,4‐tetrazine 2 was synthesized by the dimerization of ethyl p‐methylbenzoateformylhydrazone 1 in hydrazinehydrate solution. 2,3‐bis(4‐methylphenyl)‐6,7,14,15‐tetrahydro[1,2,3,4]tetrazino [2,3d][1,8, 4,5]benzodithia‐diazecine‐10,11‐dicarbonitrile 4 was sythesized by cyclization reaction of tetrazine monomer 2 onto 1,2‐bis‐(2‐iodoethylmercapto)‐4,5‐dicyanobenzene 3 . Co(II) and Cu(II) phthalocyanine complexes were prepared by reaction of the dinitrile compound ( 4 ) with the chlorides of Co(II), Cu(II), and DMAE at 175°C, 350 W in a microwave oven for 10 min. Zn(II)‐phthalocyanine complex was prepared by reaction of the dinitrile compound 4 with the acetate of Zn(II) and DMAE at 175°C, 350 W in a microwave oven for 10 min. The new compounds were characterized by a combination of IR, 1H‐NMR, 13C NMR, UV‐vis, elemental analysis, and MS spectral data. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:456–461, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20623  相似文献   

12.
Phthalocyanines with four biphenyl-malonic ester groups on the periphery were synthesized by cyclotetramerization of 4-(1,1-dicarbethoxy-2-(4-biphenyl)-ethyl)-phthalonitrile. The new compounds were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, UV–Vis, and MASS spectral data. Electrochemical behaviors of novel Co(II), Cu(II), and Pd(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry, and applied potential chronocoulometry techniques. While Cu(II) and Pd(II) phthalocyanines give up to four common phthalocyanine ring reductions, Co(II) phthalocyanine gave two ligand-centered and two metal-centered redox processes. HOMO–LUMO gap of the complexes are comparable with the reported MPc papers.  相似文献   

13.
In this work, a phthalonitrile derivative bearing p-sulfonylphenoxy group at the 3-position has been synthesised. The water-soluble non-peripherally tetrasubstituted zinc (3) and cobalt (4) phthalocyanines were obtained by cyclotetramerisation of this phthalonitrile derivative in the presence of anhydrous metal salts by microwave irradiation. The compounds have been characterised by using FT-IR, 1H NMR, UV–Vis and Mass spectrometry (MS) data. The aggregation behaviours of these compounds were investigated in methanol, DMSO, DMF, and water. We have also studied the aggregation behaviours of the phthalocyanine complex 3 in various DMSO/water mixtures. Additionally, the redox properties of the phthalocyanine complexes were examined in dimethylsulfoxide by voltammetry and in situ spectroelectrochemistry. Redox behaviours of the complexes supported the structures of the complexes. Metal and ring-based reductions were observed for 4 and only ring-based electron transfer processes were observed with 3.  相似文献   

14.
The tetra peripherally β-substituted 2(3),9(10),16(17),23(24)-tetrakis undecyloxy phthalocyanine derivatives, M{Pc[O-(CH2)11CH3)]4} Pc: Phthalocyanine, [M: Zn(II)(2), Ga(III)(3), and Ti(IV)(4)], have been synthesized and characterized using FT-IR, 1H, and 13CNMR, MS (MALDI-TOF), UV–vis, atomic force microscopy, electro and spectroelectro chemical and elemental analysis. The new synthesized complexes are soluble in both polar solvents and nonpolar solvents, such as THF, DMF, CHCl3, CH2Cl2, benzene, and even hexane. Electrochemical and spectroelectrochemical measurements give common metal-based and/or Pc ring-based redox processes which support the proposed structures of the complexes. While titanium phthalocyanine exhibits metal- and Pc ring-based reduction and/or oxidation couples, gallium and zinc phthalocyanines give only Pc ring-based electron transfer processes.  相似文献   

15.
A novel alcohol-soluble ionophore ligand and its non-peripherally tetrasubstituted functional 1,8,15,22-tetrakis(6-hydroxyhexylsulfanyl) metallophthalocyanines M[Pc(α-SC6H12OH)4] (M = Cu(II), Zn(II), Co(II); Pc = phthalocyanine) are reported. The aggregation and cation binding behaviors of the phthalocyanine compounds in the presence of soft AgI and PdII metal ions were investigated by using UV–Vis spectroscopy. The new compounds have been characterized by elemental analysis, IR, 1H, 13C NMR, UV/Vis spectroscopy, ESI and MALDI–TOF–MS mass spectra. Voltammetric and in-situ spectroelectrochemical studies show that while copper and zinc phthalocyanine complexes give well-defined ring-based reduction and oxidation processes, the cobalt phthalocyanine gives both metal-based and ring-based redox processes which have reversible and diffusion controlled character.  相似文献   

16.
Four new zinc(II) complexes of the type [ZnCl2(n-Bu3PE)2] (E=O (1), S (2), Se (3), or Te (4)) have been synthesized from zinc(II) chloride and the ligands n-Bu3PE giving yields of 56–88%. The adducts were characterized by multinuclear (31P, 13C, and 77Se) NMR, conductivity, IR spectroscopy and by X-ray analyses. Zinc complexes 14 are compriseS of two ligands coordinated to the metal center in a distorted tetrahedral arrangement. The P=E bond lengths of 1.497(7) (E=O), 2.000(4) (E=S), and 2.178(2) Å (E=Se) in these complexes are slightly elongated compared to those in the free ligand. In addition, a DFT/B3LYP theoretical study on the geometry optimization of the title ligands and their zinc complexes has been carried out in order to support and complement the experimental data and to further investigate the nature of the chalcogenide-metal interaction. The results show good agreement between the experimental and theoretical data.  相似文献   

17.
Our efforts toward the development of the synthesis of a novel type of receptor ligand and its tetrasubstituted phthalocyanines, 2,9,16,23-tetrakis(6-hydroxyhexylsulfanyl) phthalocyanine, M[Pc(S–C6H13OH)4] (M = Zn(II), Cu(II), Co(II)), bearing sulfur and oxygen donor atoms on the periphery together with hexyl moieties, have been carried out together with spectroscopic and electrochemical characterization. The newly synthesized functional phthalocyanines were soluble in MeOH, EtOH, THF, DMF, CNP (α-chloronapthalene), DMSO and quinoline, and less soluble in i-PrOH and CH3CN. Cation binding abilities of the functional phthalocyanines with Ag+, Pd2+, Hg2+ and Cd2+, resulting in the formation of polynuclear phthalocyanine complexes, were evaluated by UV–Vis spectroscopic techniques. The spectroscopic properties of the complexes were affected strongly by the electron-donating sulfanyl units on the periphery. The cyclic voltammetry of the complexes were examined on a platinum electrode in DMSO. The new synthesized compounds have been characterized by elemental analysis, FTIR, 1H and 13C NMR, MS (ESI and MALDI-TOF) and UV–Vis spectral data.  相似文献   

18.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

19.
In this work, we aimed to synthesize and characterize a novel tetra-directional ligand, (2E,2′E)-2,2′-((((2-(1,3-bis(4-((E)-(2-carbamothioylhydrazono)methyl)phenoxy)propan-2-ylidene)propane-1,3-diyl)bis(oxy))bis(4,1-phenylene))bis(methanylylidene))bis(hydrazinecarbothioamide) (5), including thiosemicarbazone group and its novel tetra-directional-tetra-nuclear Schiff base complexes. For this purpose, we used 1,4-dibromo-2,3-bis(bromomethyl)but-2-ene (2) as starting material. 4,4′-((2-(1,3-Bis(4-formylphenoxy)propan-2-ylidene)propane-1,3-diyl) bis(oxy))dibenzaldehyde (3) was synthesized by the reaction of an equivalent 1,4-dibromo-2,3-bis(bromomethyl)but-2-ene (2) and 4 equivalents of 4-hydroxybenzaldehyde. Then, compound 5 was synthesized in high yield (86%) by a condensation reaction of compound 3 with thiosemicarbazide (4). Finally, four novel tetra-nuclear Cr(III) or Fe(III) complexes of compound 5 were synthesized. The synthesized compounds were characterized using elemental analyses, 1H NMR, Fourier transform–infrared spectrometry, liquid chromatography–mass spectrometry (ESI+), and thermal analyses. The metal ratios of the prepared complexes were determined using an atomic absorption spectrophotometer. We also investigated their effects on the magnetic behaviors of [salen, salophen, Cr(III)/Fe(III)] capped complexes. The complexes were found to be low-spin distorted octahedral Fe(III) and distorted octahedral Cr(III), all bridged by thiosemicarbazone.  相似文献   

20.
A novel silicon(IV) phthalocyanine with two axial poly(sebacic anhydride) chains has been synthesized by melt condensation of silicon phthalocyanine dihydroxide and oligo(sebacic anhydride). The polymer has been spectroscopically characterized and its molecular weights have been determined by gel permeation chromatography (GPC) and 1H NMR spectroscopy. Nanoparticles with an intensity‐average apparent hydrodynamic radius of 65 ± 1 nm have been prepared from this polymer via a microphase inversion method with sodium dodecyl sulfate as the surfactant. The spherical nanoparticles contain loosely aggregated polymer chains, trapping about 90% of the water. On treatment with NaOH, these nanoparticles undergo degradation that has been monitored by laser light scattering and fluorescence spectroscopy. Because of the axial substitution, the change in the aggregation state of the phthalocyanine core of this polymer during nanoparticle formation and degradation is relatively small compared with that of the zinc(II) phthalocyanine analogue reported earlier, in which poly(sebacic anhydride) chains are linked to the periphery of the phthalocyanine ring. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 837–843, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号