首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamical response of spin-S(S=1, 3/2, 2, 3) Ising ferromagnet to the plane propagating wave, standing magnetic field wave and uniformly oscillating field with constant frequency are studied separately in two dimensions by extensive Monte Carlo simulation. Depending upon the strength of the magnetic field and the value of the spin state of the Ising spin lattice two different dynamical phases are observed. For a fixed value of S and the amplitude of the propagating magnetic field wave the system undergoes a dynamical phase transition from propagating phase to pinned phase as the temperature of the system is cooled down. Similarly in case with standing magnetic wave the system undergoes dynamical phase transition from high temperature phase where spins oscillate coherently in alternate bands of half wavelength of the standing magnetic wave to the low temperature pinned or spin frozen phase. For a fixed value of the amplitude of magnetic field oscillation the transition temperature is observed to decrease to a limiting value as the value of spin S is increased. The time averaged magnetisation over a full cycle of the magnetic field oscillation plays the role of the dynamic order parameter. A comprehensive phase boundary is drawn in the plane of magnetic field amplitude and dynamic transition temperature. It is found that the phase boundary shrinks inwards for high value of spin state S.Also in the low temperature(and high field) region the phase boundaries are closely spaced.  相似文献   

2.
We have studied the nonequilibrium dynamic phase transitions of both three-dimensional (3D) kinetic Ising and Heisenberg spin systems in the presence of a perturbative magnetic field by Monte Carlo simulation. The feature of the phase transition is characterized by studying the distribution of the dynamical order parameter. In the case of anisotropic Ising spin system (ISS), the dynamic transition is discontinuous and continuous under low and high temperatures respectively, which indicates the existence of a tri-critical point (TCP) on the phase boundary separating low-temperature order phase and high-temperature disorder phase. The TCP shifts towards the higher temperature region with the decrease of frequency, i.e. T_{TCP}=1.33×exp(-ω/30.7). In the case of the isotropic Heisenberg spin system (HSS), however, the situation on dynamic phase transition of HSS is quite different from that of ISS in that no stable dynamical phase transition was observed in kinetic HSS after a threshold time. The evolution of magnetization in the HSS driven by a symmetrical external field after a certain duration always tends asymptotically to a disorder state no matter what an initial state the system starts with. The threshold time τ depends upon the amplitude H_{0}, reduced temperature T/T_C and the frequency ω as τ=C·ω^α·H_0^{-β}·(T/T_C)^{-γ}.  相似文献   

3.
The dynamical responses of Ising metamagnet (layered antiferromagnet) in the presence of a sinusoidally oscillating magnetic field are studied by Monte Carlo simulation. The time average staggered magnetisation plays the role of dynamic order parameter. A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. The results are compared with that obtained from pure ferromagnetic system. The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculations.  相似文献   

4.
The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.  相似文献   

5.
动态外场作用下Ising自旋体系的非平衡动态相变   总被引:2,自引:0,他引:2       下载免费PDF全文
邵元智  钟伟荣  林光明 《物理学报》2004,53(9):3165-3170
系统地考察了Ising自旋体系的动力学方程对三种不同性质的驱动外场(正弦波 、方波和锯齿波)的动态响应及其相应的非平衡动态相变特征.在正弦波和方波的驱动场 作用下,体系存在分别对应于低温对称破缺的铁磁有序态和高温对称顺磁无序态的动态非平衡转变,相应的动态转变相界上存在区分连续转变和非连续转变的三临界点;而锯齿波驱动 场情形下体系始终维持对称性破缺的有序态.体系动态转变表现出的上述差异与作用外场的驱动特征有关.确定了表征相应动态相变相界的临界驱动外场振幅h0C和频率 ωc、体系的温度tc, 并给予了分析讨论 关键词: Ising自旋体系 非平衡动态相变 对称性 平均场  相似文献   

6.
7.
We investigate the classical spin dynamics of the kagome antiferromagnet by combining Monte Carlo and spin dynamics simulations. We show that this model has two distinct low temperature dynamical regimes, both sustaining propagative modes. The expected gauge invariance type of the low energy, low temperature, out-of-plane excitations is also evidenced in the nonlinear regime. A detailed analysis of the excitations allows us to identify ghosts in the dynamical structure factor, i.e., propagating excitations with a strongly reduced spectral weight. We argue that these dynamical extinction rules are of geometrical origin.  相似文献   

8.
In this Letter we address the nature of broken ergodicity in the low temperature phase of Ising spin glasses by examining spectral properties of spin correlation functions C(ij) identical with. We argue that more than one extensive [i.e., O(N)] eigenvalue in this matrix signals replica symmetry breaking. Monte Carlo simulations of the infinite-range Ising spin-glass model, above and below the Almeida-Thouless line, support this conclusion. Exchange Monte Carlo simulations for the short-range model in four dimensions find a single extensive eigenvalue and a large subdominant eigenvalue consistent with droplet model expectations.  相似文献   

9.
The magnetic hyperfine field of tantalum nuclei in a high purity chromium matrix has been measured using the Time Differential Perturbed Angular Correlation technique. The spectra show that the hyperfine field is proportional to the amplitude of the spin density wave of chromium and that the tantalum probe nuclei do not clamp the phase of the spin density wave. The incommensurate antiferromagnetic first order phase transition as well as the spin flip transition have been observed. The temperature dependence of the hyperfine field is shown to deviate from the temperature dependence of the maximum magnetization of the spin density wave.  相似文献   

10.
We use Monte Carlo simulations to identify the mechanism that allows for phase transitions in dipolar spin ice to occur and survive for an applied magnetic field H much larger in strength than that of the spin-spin interactions. In the most generic and highest symmetry case, the spins on one out of four sublattices of the pyrochlore decouple from the total local exchange+dipolar+applied field. In the special case where H is aligned perfectly along the [110] crystallographic direction, spin chains perpendicular to H show a transition to q=X long-range order, which proceeds via a one- to three-dimensional crossover. We propose that these transitions are relevant to the origin of specific heat features observed in powder samples of the Dy2Ti2O7 spin ice material for H above 1 Tesla.  相似文献   

11.
Computer simulation of phase transitions is made by the Monte Carlo method using a three-dimensional disordered antiferromagnetic Ising model in the external magnetic field. It is found that in the case where the spin concentration in a system is lower than a threshold one, the effects of random magnetic fields destroy the second-order phase transition and lead to the first-order phase transition into a new phase state of the system characterized by a ground spin-glassy state and metastable energy states at finite temperatures. The dependence of the threshold concentration on the external magnetic field is revealed.  相似文献   

12.
Freedericksz transition, which is usually analyzed by an elastic theory, is studied on the basis of statistical mechanical ground, where nematics with positive dielectric anisotropy in homogeneous anchoring cell is exposed to an electric field in the direction of wall normal. In low temperature region, an oblique axial symmetry breaking occurs, which is nothing but the Freedericksz transition. In high temperature and high field region, biaxial nematic phase with principal axis parallel to the field direction at interior area of the system is proved to appear. A phase diagram on the field versus temperature plane is obtained and compared with the one at a bulk with common biaxial symmetry, where both of electric and magnetic fields are applied in directions perpendicular to each other. In the latter, no symmetry breaking occurs, in contrast with the former case above-mentioned, and the reason why this difference occurs is elucidated.  相似文献   

13.
基于自旋波和格林函数理论,研究了低温下二维应变诱导的EuTiO_3在铁电四方相下的磁性性质,主要讨论了在铁电四方相下Eu离子在铁磁性和反铁磁性有序时系统沿不同高对称性方向的自旋波散射和磁化.我们发现施加外加应变不仅可改变晶格结构的对称性,还可以通过改变电子自旋之间的交换耦合作用,进而改变该材料的磁性散射和磁化等.  相似文献   

14.
基于自旋波和格林函数理论,研究了低温下二维应变诱导的EuTiO3在铁电四方相下的磁性性质,主要讨论了在铁电四方相下Eu离子在铁磁性和反铁磁性有序时系统沿不同高对称性方向的自旋波散射和磁化。我们发现施加外加应变不仅可改变晶格结构的对称性,还可以通过改变电子自旋之间的交换耦合作用,进而改变该材料的磁性散射和磁化等。  相似文献   

15.
《Current Applied Physics》2014,14(3):516-520
In this article, we employ the semiclassical Monte Carlo approach to study the spin polarized electron transport in single layer graphene channel. The Monte Carlo method can treat non-equilibrium carrier transport and effects of external electric and magnetic fields on carrier transport can be incorporated in the formalism. Graphene is the ideal material for spintronics application due to very low Spin Orbit Interaction. Spin relaxation in graphene is caused by D'yakonov-Perel (DP) relaxation and Elliott-Yafet (EY) relaxation. We study effect of electron electron scattering, temperature, magnetic field and driving electric field on spin relaxation length in single layer graphene. We have considered injection polarization along z-direction which is perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. This theoretical investigation is particularly important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene.  相似文献   

16.
17.
In this work, we apply a principal component analysis (PCA) method with a kernel trick to study the classification of phases and phase transitions in classical XY models of frustrated lattices. Compared to our previous work with the linear PCA method, the kernel PCA can capture nonlinear functions. In this case, the Z2 chiral order of the classical spins in these lattices is indeed a nonlinear function of the input spin configurations. In addition to the principal component revealed by the linear PCA, the kernel PCA can find two more principal components using the data generated by Monte Carlo simulation for various temperatures as the input. One of them is related to the strength of the U(1) order parameter, and the other directly manifests the chiral order parameter that characterizes the Z2 symmetry breaking. For a temperature-resolved study, the temperature dependence of the principal eigenvalue associated with the Z2 symmetry breaking clearly shows second-order phase transition behavior.  相似文献   

18.
The magnetic properties of the Co38Ni34Al28 alloy have been studied. The alloy exhibits a first order austenite-martensite phase transition in the temperature region between 155 and 247 K. A strain of 0.07% is produced across this phase transition. The Arrott plots obtained from the isothermal magnetic field dependence of magnetization indicate the presence of spontaneous magnetization both in the austenite and martensite phases, confirming the ferromagnetic character of the alloy up to room temperature. The temperature dependence of the high field magnetization indicates the presence of spin wave excitations, spin wave excitation gap and spin wave-spin wave interactions in the martensite phase. The magnetic anisotropy energy constant for the Co38Ni34Al28 alloy is estimated both with the help of the standard law of approach to saturation of magnetization, and also from the field dependence of magnetization using the field for technical saturation of magnetization. The temperature dependences of these energy terms are compared. The estimated values of the magnetic anisotropy constant seem to be in agreement with the magnitude of the spin wave excitation gap estimated from the temperature dependence of high field magnetization.  相似文献   

19.
We study the nonlinear spin dynamics of Heisenberg helimagnet under the effect of electromagnetic wave (EM) propagation. The basic dynamical equation of the spin evolution governed by Landau–Lifshitz equation resembles the director dynamics of the twist in a cholestric liquid crystal. With the use of reductive perturbation technique the perturbation is invoked for the spin magnetization and magnetic field components of the propagating electromagnetic wave. A steady-state solution is derived for the weakly nonlinear regime and for the next order, the components turn around s plane perpendicular to the propagation direction. It is found that as the electromagnetic wave propagates in the medium, both the magnetization and magnetic field modulate in the form of kink soliton modes by introducing amplitude fluctuation in the tail part of the same.  相似文献   

20.
By a Green function approach, spin waves in a surface-rearranged ferromagnetic thin film are derived both analytically and numerically. Heisenberg exchange, bulk and surface anisotropy between nearest neighbors and external magnetic field are taken into account for an sc film with {001} surfaces. Because of the anisotropies, the dynamical matrix defined from the Green function equations is not Hermitian, so we generalize the Bogoliubov canonical transformation to derive the spin wave spectrum. The spin waves propagating inside the film result from the superposition of two sine or hyperbolic sine waves. The amplitude and polarization of spin waves are shown to be quite sensitive to the details of the surface rearrangements, whereas spin wave energies are not so sensitive to such rerrangements, except when soft modes occur in the unrearranged configuration. In that case, we show that when the surface rearrangement is taken into account, soft modes disappear in the spin wave spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号