首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of polycrystalline spinel ferrites with composition Cu1−xMgxFe2O4 where 0.0 ≤ x ≤ 1 are prepared by the standard ceramic method. The single-phase cubic spinel structure of all the samples has been confirmed from X-ray diffraction analysis. The lattice constant increases linearly with increasing magnesium content obeying Vegard's law. The electrical properties (ɛ′, and σ) of the prepared samples are measured at different temperatures as a function of applied frequency ranging from 100 kHz up to 5 MHz. The general trend of ɛ′, and σ is decreased with increasing Mg2+ and increases with increasing temperature. The observed variation of dielectric properties is explained on the basis of Cu2+/Cu1+ ionic concentration as well as the electronic hopping frequency between Fe2+ and Fe3+ ions in the present samples. The data of initial permeability is also discussed.  相似文献   

2.
Summary Bis(acetylacetonato)VOII,–CoII,–NiII,–CuII,–ZnII, –UO 2 II and tris(acetylacetonato)FeIII react with benzohydroxamic acid to yield the corresponding mixed ligand complexes as a result of displacement of one acetylacetone molecule. Intermolecular association may be the reason for six-coordination geometry around the metal ions. A t.g.a. study of the complexes shows, in most cases, initial loss of alcohol and water molecules associated with the complexes; subsequent decomposition steps are characterised by very sharp weight loss. The photochemical stability of the complexes has been studied. Intraligand excitation causes a decomposition in the case of FeIII and VOII-complexes but no detectable effect for CoII, NiII, CuII, ZnII, or UO 2 II -complexes.  相似文献   

3.
The formation of 2-aminoacetamide from ammonia and glycine and N-glycylglycine from two glycine molecules with and without Mg2+, Cu2+, and Zn2+ cations as catalysts have been studied as model reactions for peptide bond formation using the B3LYP functional with 6–311+G(d,p) and 6–31G(d) basis sets. The B3LYP method was also used to characterize the nine gas–phase complexes of neutral glycine, its amide (2-aminoacetamide), and N-glycylglycine with Lewis acids Mg2+, Cu2+, and Zn2+, respectively. Further, the gas-phase hydration of metal-coordinated complexes of glycine, 2-aminoacetamide, and N-glycylglycine was also investigated. Finally, the effect of water on the structure and reactivity of the metal coordinated complexes was determined. Enthalpies and Gibbs energies for the stationary points of each reaction have been calculated to determine the thermodynamics of the reactions investigated. A substantial decrease in reaction enthalpies and Gibbs energies was found for glycine–ammonia and glycine–glycine reactions coordinated by Mg2+, Cu2+, and Zn2+ ions compared to those of the uncoordinated 2-aminoacetamide bond formation. The formation of a dipeptide is a more exothermic process than the creation of simple 2-aminoacetamide from glycine. The energetic effect of the transition metal ions Cu2+ and Zn2+ is of similar strength and more pronounced than that of the Mg2+ cation. The basicity order of the amides investigated shows the order: NH2CH2CO2H < NH2CH2CONH2 < NH2CH2CONHCH2CO2H. Interaction enthalpies and Gibbs energies of metal ion–amide complexes increase as Mg2+2+2+. In both reactant (glycine) and reaction products (2-aminoacetamide, N-glycylglycine) dihydration caused considerable reduction (about 200–500 kJ-mol–1) of the strength of the bifurcated metal–amide bonds. Solvent effects also reduce the reaction enthalpy and Gibbs energy of reactions under study.  相似文献   

4.
Mössbauer effect technique has been used for the comparative study of Cu1?x Zn x Fe2O4 and Cu1?x Cd x Fe2O4 ( x = 0.0?1.0) ferrites. Both Zn2+ and Cd2+ cations are divalent, non-magnetic ions with different ionic radii. With the substitution of these non-magnetic cations the average internal magnetic field decreases and paramagnetic behavior is dominated at x = 0.7 in both series. It is observed that the occupancy of Cu2+ ions for tetrahedral site is not constant for all compositions but fluctuate between 8–15%. It is also found that Cu2+ ions have more preference for tetrahedral site in Cu-Zn system as compared to the Cu-Cd system. Zn2+ and Cd2+ both ions occupy tetrahedral site completely and form normal spinels for x = 1.0.  相似文献   

5.
In a search for environmental-friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of 3-hydroxy-2,2′-iminodisuccinic acid with Mg2+, Ca2+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ ions in aqueous 0.1 mol L?1 NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. In all cases, complex formation was dominated by stable ML n ?4 complexes.  相似文献   

6.
Cation distribution in quenched and furnace-cooled samples of composition NixM1?xFe2O4 (where M is either Mg2+ or Cu2+) has been studied through magnetization measurements. It has been found that cation distribution in these mixed ferrites cannot be predicted by site preference energies. In magnesium-nickel ferrites, cation distribution is controlled by heat treatment up to x = 0.5, beyond which the effect of heat treatment diminishes. Addition of Ni2+ ions in copper ferrite reduces the diffusibility of Cu2+ ions and the distribution tends toward inverse spinel in the high-nickel region.  相似文献   

7.
The state of 1,2,3,4-tetrahydro-8-hydroxyquinoline is studied spectrophotometrically in the near-UV and visible regions at different pH in an aqueous solution in the presence and absence of Cu2+, Zn2+, and Cd2+ cations. The dissociation constant (pK 1 ≈ 5.6 (293 K)) is (293 K)) is estimated from the pH-metric data. The stability of the complexes formed decreases in the series Cu2+ > Zn2+ ≥ Cd2+. The influence of tetrahydro atoms on the dissociation, complexation, and change in the state of 1,2,3,4-tetrahydro-8-hydroxyquinoline in an aqueous solution is discussed.  相似文献   

8.
The electron capture dissociation (ECD) and collision-induced dissociation (CID) of complexes of polyamidoamine (PAMAM) dendrimers with metal ions Ag+, Cu2+, Zn2+, Fe2+, and Fe3+ were determined by Fourier transform ion cyclotron resonance mass spectrometry. Complexes were of the form [PD + M + mH]5+ where PD = generation two PAMAM dendrimer with amidoethanol surface groups, M = metal ion, m = 2−4. Complementary information regarding the site and coordination chemistry of the metal ions can be obtained from the two techniques. The results suggest that complexes of Fe3+ and Cu2+ are coordinated via both core tertiary amines, whereas coordination of Ag+ involves a single core tertiary amine. The Zn2+ and Fe2+ complexes do not appear to involve coordination by the dendrimer core.  相似文献   

9.
Among known molecular switches, spiropyrans attract considerable interest because of their reversible responsiveness to external stimuli and the deep conformational and electronic changes that characterize the switching process between the two isomeric forms [spiropyran (SP) and merocyanine (MC)]. Metal coordination is one of the most interesting aspects of spiropyrans for its potential in sensing, catalysis, and medicinal chemistry, but little is known about the details surrounding spiropyran–metal ion binding. We investigated the interplay between an N‐modified 8‐methoxy‐6‐nitrospiropyran (SP‐E), designed to provide appropriate molecular flexibility and a range of competing/collaborative metal binding sites, with Mg2+, Cu2+ and Zn2+, which were chosen for their similar coordination geometry preferences while differing in their hard/soft character. The formed molecular complexes were studied by means of UV/Vis, fluorescence, and NMR spectroscopies and mass spectrometry, and the crystal structure of the SP‐E–Cu complex was also obtained. The results indicate that the Mg2+, Zn2+ and Cu2+ complexes have identical coordination stoichiometry. Furthermore, the Mg2+ and Zn2+ complexes display fluorescence properties in solution and visible‐light responsiveness. These results provide important spectroscopic and structural information that can serve as a foundation for rational design of spiropyran‐based smart materials for metal sensing and scavenging applications.  相似文献   

10.
The binding ability of five bifunctional 3-hydroxy-4-pyridinones towards Cu2+ and Fe3+ was studied by means of potentiometric and UV–Vis spectrophotometric measurements carried out at I = 0.15 mol L−1 in NaCl(aq), T = 298.15 K and 310.15 K. The data treatments allowed us to determine speciation schemes featured by metal-ligand species with different stoichiometry and stability, owing to the various functional groups present in the 3-hydroxy-4-pyridinones structures, which could potentially participate in the metal complexation, and in the Cu2+ and Fe3+ behaviour in aqueous solution. Furthermore, the sequestering ability and metal chelating affinity of the ligands were investigated by the determination of pL0.5 and pM parameters at different pH conditions. Finally, a comparison between the Cu2+ and Fe3+/3-hydroxy-4-pyridinones data herein presented with those already reported in the literature on the interaction of Zn2+ and Al3+ with the same ligands showed that, from the thermodynamic point of view, the 3-hydroxy-4-pyridinones are particularly selective towards Fe3+ and could therefore be considered promising iron-chelating agents, also avoiding the possibility of competition, and eventually the depletion, of essential metal cations of biological and environmental relevance, such as Cu2+ and Zn2+.  相似文献   

11.
In this work, we synthesised and characterised three novel fluorescence macrocyclic sensors containing optically active dansyl groups. The studies for the interaction of the synthesised compounds with various mental ions (Li+, Na+, K+, Ag+, Mg2+, Ca2+, Ba2+, Pb2+, Zn2+, Co2+, Cd2+, Hg2+, Ni2+, Cu2+, Mn2+, Cr3+, Al3+, Fe3+) were performed by fluorescence titration, Job’s plot, ESI-MS and DFT calculations. The results showed that the sensors 1a–1c displayed selective recognition for Cu2+ and Fe3+ ions and formed stoichiometry 1:1 complex through PET mechanism in DMSO/H2O solution (1:1, v/v, pH 7.4 of HEPES). The binding constant (K) and detection limit were calculated.  相似文献   

12.
The stability constants of 1: 1 complexes of Mg2+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+ with 29 N-donor ligands (ammonia, alkylamines, aniline, pyridine, imidazole, pyrazole, benzimidazole, isoquinoline, and their alkyl-and halogen-substituted derivatives) in aqueous solutions at 298 K were calculated by integration of the ligand distribution function. The stability constants are determined by the effective charge on the electron donor atom of the ligand and by the sizes of the cation and ligand, as well as by the degree of covalence of the coordination bond.  相似文献   

13.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了ZnxMn1-x Fe2O4和NixMn1-xFe2O4立方相中的Zn2+、Ni2+、Mn2+以及Fe3+在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe0.093+Mn0.912+)[Fe1.913+Mn0.092+]O4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe0.113+ Mn0.892+)[Fe1.893+Mn0.112+]O4,均与实验结果符合较好。在锌铁氧体中,室温下Zn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn2+和Fe3+发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe3+在室温下占据在8a亚晶格上,Ni2+与剩下另一半的Fe3+共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学预测建立了立方相尖晶石结构的ZnxMn1-xFe2O4、NixMn1-xFe2O4复合体系中阳离子占位行为与热处理温度对占位的影响。  相似文献   

14.
The formation of complexes of N,N′-bis-[2-(2-pyridylmethyl-amino)-ethyl]-oxamide (PAOH2) with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ has been studied potentiometrically and spectrophotometrically. Besides mononnclear species, PAOH2 forms the binuclear or heterobinuclear complexes Cu2(PAOH2)4+, Cu2PAO2+, Zn2PAO2+, CuNiPAO2+, and probably CuZnPAO2+ Some of these five compounds show an UV. absorption band near 350 nm reminiscent of that to dimeric copper acetate. The results suggest that charge transfer from the oxamidato group to Cu2+ is responsible for the near UV. absorption.  相似文献   

15.
Abstract

Adducts of theobromine (tbH) with 3d metal perchlorates (Mn+ = Cr3-. Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2- I here prepared by refluxing mixtures of the Iigand and a metal salt in ethyl acetate-triethyl orthoformate. The new complexes invariably involve 2: 1 molar ratios of tbH to metal ion and are apparently monomeric with terminal tbH ligands binding riaa ring nitrogen (N9 or Nl). The Mn2+, Cu2+ and Zn2- complexes are distorted tetrahedral, involving tuo tbH and two unidentate perchlorato ligands in the first coordination sphere of the metal ion. The remaining metal(II) complexes (Fe, Co, Ni) were obtained as monohydrates. These compounds are pentacoordinated of the [M(tbH)2(OClO3)2(OH2)] type, containing one aqua ligand in addition to the tbH and perchlorato ligands. The Cr3+ and Fe3+ complexes are low-symmetry hexacoordinated, with two tbH ligands. two unidentate and one bidentate chelating perchlorate Iigands.  相似文献   

16.
1-Isonicotinoyl-4-benzoyl-3-thiosemicarbazide (IBtsc) and its CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII complexes have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis., i.r., n.m.r. and FAB mass spectral data. The room temperature e.s.r. spectra of the CrIII, FeIII and CuII complexes yield values, characteristic of octahedral, tetrahedral and square-planar complexes, respectively. The Mössbauer spectra of [Fe(IBtsc-H)Cl2] at room temperature and at 78 K suggest the presence of high-spin FeIII. The NiII, CrIII and CuII complexes show semiconducting behaviour in the solid state, but the ZnII complex is an insulator at room temperature. IBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

17.
Zusammenfassung Es wurde die Löslichkeit bei 20° C von durch Sinterung eines Gemisches von ZnO mit Fe2O3 bei 500° C bis 1100° C erhaltenen Präparaten in 2n-HNO3 untersucht. Unter 600° gesinterte Präparate geben kein Fe3+ an die Lösung ab, dagegen leicht Zn2+. Bei Sintertemperaturen von 650 bis 950° C ist die Zinklöslichkeit noch ziemlich groß, aber fallend. Die Fe3+-Lösbarkeit wächst stark bei Temperaturen bis 850° C und ist noch bei 900° C erheblich. Oberhalb 950° C Sintertemperatur fällt der Fe3+- und der Zn2+-Gehalt stark ab. Röntgenographisch wurde der Ferritisierungsprozeß im Bereich von 650 bis 950° C bestätigt. Oberhalb 1000° C tritt ein vollkommen ausgebildetes Zinkferrit auf.
The solubility of transition phases of zinc ferrites in HNO3
The solubility in 2n-HNO3 of the products of baking a mixture of ZnO and Fe2O3 between 500° and 1100° C was investigated. From the products of baking up to 600° C, Fe3+ does not dissolve, while Zn2+ dissolves easily. In products of sintering between 650° to 950° C the solubility of Zn2+ is still large, yet decreasing. The content of the solution on Fe3+ increases very strongly for temperatures up to 850° C and is appreciable even at 900° C. Above 950°C sintering temperature, the Fe3+ and Zn2+ content of the solution drops very strongly. The formation of ferrites in the range of 650° to 950° C was confirmed by X-ray powder methods. Above 1000° C fully developed zinc ferrite is found.


Mit 3 Abbildungen  相似文献   

18.
A novel BF2–curcumin-based chemosensor 1, namely monopicolinate of BF2–curcumin complex, was designed, synthesized and applied for the detection of Cu2+ in aqueous buffer solution and living cells. Sensor 1 exhibited sensitive naked-eye color change toward Cu2+ from blue to pink in TBS solution and the detection limit was estimated to be 0.12 µM. The selectivity of sensor 1 for Cu2+ was high over competing metal ions (Ag+, Cu+, Hg2+, Mg2+, Ca2+, Co2+, Zn2+, Mn2+, Ni2+, Fe2+ and Fe3+). Based on the experimental results, the sensing mechanism was proposed for the Cu2+ triggered hydrolysis of 1 to BF2–curcumin which has unique chromogenic and fluorogenic properties. Compared with other chemosensors with a similar mechanism, chemosensor 1 had a comparatively large Stokes shift and the emission wavelength was close to NIR. Moreover, cell imaging investigations indicated that sensor 1 has the potential to be applied for practical Cu2+ detection in biological systems.  相似文献   

19.
A tridentate bisbenzimidazole-pyridine ligand (L-C5) with two pentyl side-units and its metal complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ metal ions were synthesized and characterized. The structures of the ligand (L-C5) and its five coordinate [Mn(L-C5)Cl2] were elucidated by single crystal X-ray diffraction studies. The absorption and photoluminescence properties of the compounds were studied in solution media. The ligand is highly fluorescent, and binding of the metal ions to the ligand has caused significant changes in the emission band (shift or quenching). Moreover, the effect of aggregation on UV–Vis. absorption and emission properties was examined in MeOH-water mixtures. The ligand was found to show aggregation-induced quenching in the MeOH-water mixture. The ligand was also screened for its colorimetric and fluorometric sensing ability of several metal ions [Na+, K+, Mg2+, Al3+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Hg2+, Pb2+]. The ligand showed selective sensing ability towards Zn2+, and the limit of detection was calculated as 3.09 × 10−7 m . The ligand also showed a distinguishable color change in the presence of Fe2+ under daylight.  相似文献   

20.
Thermogravimetry (TG) of A(H2O)6BX6 complexes are presented, with A  Cd2+, Co2+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+, Pb2+, Zn2+, BSi4+, Sn4+, Ti4+, Zr4+, and XCl?, F?. On a selected number of complexes, differential thermal analyses (DTA) and differential scanning calorimetric measurements (DSC) have been performed. It was found possible to synthesize most complexes including Cd(H2O)6TiF6 as single crystals. The hexafluoride and the titanate compounds are formed from the corresponding cadmium hexaquo—hexafluoride complex. The cadmium titanate could be made either in the ilmenite or in the perovskite structure. The decomposition programs for the preparation of NiTiO3 and CdTiO3 are presented.The hexaquo—hexahalide complexes, in general, show one of two decomposition types. The intermediate product in one type is the metal(II) fluoride AX2 and in the other the mixed hexahalide compounds ABX6. Which type of decomposition occurs depends on the anion BX2?6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号