首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

2.
This paper deals with an initial-boundary value problem for the system $$\left\{ \begin{array}{llll} n_t + u\cdot\nabla n &=& \Delta n -\nabla \cdot (n\chi(c)\nabla c), \quad\quad & x\in\Omega, \, t > 0,\\ c_t + u\cdot\nabla c &=& \Delta c-nf(c), \quad\quad & x\in\Omega, \, t > 0,\\ u_t + \kappa (u\cdot \nabla) u &=& \Delta u + \nabla P + n \nabla\phi, \qquad & x\in\Omega, \, t > 0,\\ \nabla \cdot u &=& 0, \qquad & x\in\Omega, \, t > 0,\end{array} \right.$$ which has been proposed as a model for the spatio-temporal evolution of populations of swimming aerobic bacteria. It is known that in bounded convex domains ${\Omega \subset \mathbb{R}^2}$ and under appropriate assumptions on the parameter functions χ, f and ?, for each ${\kappa\in\mathbb{R}}$ and all sufficiently smooth initial data this problem possesses a unique global-in-time classical solution. The present work asserts that this solution stabilizes to the spatially uniform equilibrium ${(\overline{n_0},0,0)}$ , where ${\overline{n_0}:=\frac{1}{|\Omega|} \int_\Omega n(x,0)\,{\rm d}x}$ , in the sense that as t→∞, $$n(\cdot,t) \to \overline{n_0}, \qquad c(\cdot,t) \to 0 \qquad \text{and}\qquad u(\cdot,t) \to 0$$ hold with respect to the norm in ${L^\infty(\Omega)}$ .  相似文献   

3.
We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

4.
We consider the sinh-Poisson equation $$(P) _ \lambda - \Delta{u} = \lambda \, {\rm sinh} \, u \quad {\rm in} \, \Omega, \quad u = 0 \quad {\rm on} \, \partial\Omega$$ , where Ω is a smooth bounded domain in ${\mathbb{R}^2}$ and λ is a small positive parameter. If ${0 \in \Omega}$ and Ω is symmetric with respect to the origin, for any integer k if λ is small enough, we construct a family of solutions to (P) λ , which blows up at the origin, whose positive mass is 4πk(k?1) and negative mass is 4πk(k + 1). This gives a complete answer to an open problem formulated by Jost et al. (Calc Var PDE 31(2):263–276, 2008).  相似文献   

5.
In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

6.
We consider the steady Stokes and Oseen problems in bounded and exterior domains of ${\mathbb{R}^n}$ of class C k-1,1 (n = 2, 3; k ≥ 2). We prove existence and uniqueness of a very weak solution for boundary data a in ${W^{2-k-1/q,q} (\partial\Omega)}$ . If ${\Omega}$ is of class ${C^\infty}$ , we can assume a to be a distribution on ${\partial\Omega}$ .  相似文献   

7.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

8.
For a domain ${\Omega \subset \mathbb{R}^{N}}$ we consider the equation $$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$ with zero Dirichlet boundary conditions and ${p\in(2, 2^*)}$ . Here ${V \geqq 0}$ and Q n are bounded functions that are positive in a region contained in ${\Omega}$ and negative outside, and such that the sets {Q n  > 0} shrink to a point ${x_0 \in \Omega}$ as ${n \to \infty}$ . We show that if u n is a nontrivial solution corresponding to Q n , then the sequence (u n ) concentrates at x 0 with respect to the H 1 and certain L q -norms. We also show that if the sets {Q n  > 0} shrink to two points and u n are ground state solutions, then they concentrate at one of these points.  相似文献   

9.
We discuss partial regularity results concerning local minimizers ${u : \mathbb{R}^3 \supset \Omega \rightarrow \mathbb{R}^3}$ of variational integrals of the form $$\int\limits_{\Omega}\left\{h(|\varepsilon(w)|) - f \cdot w\right\}\,dx$$ defined on appropriate classes of solenoidal fields, where h is a N-function of rather general type. As a byproduct we obtain a theorem on partial C 1-regularity for weak solutions of certain non-uniformly elliptic Stokes-type systems modelling generalized Newtonian fluids.  相似文献   

10.
In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain ${\Omega}$ of the N-dimensional Eulidean space ${\mathbb{R}^N, N \geq 2}$ . This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter ${\lambda}$ varying in a sector ${\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}$ , where ${0 < \sigma < \pi/2}$ and ${\lambda_0 \geq 1}$ . The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution ${p \in \hat{W}^1_{q, \Gamma}(\Omega)}$ to the variational problem: ${(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}$ for any ${\varphi \in \hat W^1_{q', \Gamma}(\Omega)}$ . Here, ${1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}$ is the closure of ${W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}$ by the semi-norm ${\|\nabla \cdot \|_{L_q(\Omega)}}$ , and ${\Gamma}$ is the boundary of ${\Omega}$ . In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in ${(\lambda_0, \infty)}$ . Our assumption is satisfied for any ${q \in (1, \infty)}$ by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.  相似文献   

11.
For every ${\varepsilon > 0}$ , we consider the Green’s matrix ${G_{\varepsilon}(x, y)}$ of the Stokes equations describing the motion of incompressible fluids in a bounded domain ${\Omega_{\varepsilon} \subset \mathbb{R}^d}$ , which is a family of perturbation of domains from ${\Omega\equiv \Omega_0}$ with the smooth boundary ${\partial\Omega}$ . Assuming the volume preserving property, that is, ${\mbox{vol.}\Omega_{\varepsilon} = \mbox{vol.}\Omega}$ for all ${\varepsilon > 0}$ , we give an explicit representation formula for ${\delta G(x, y) \equiv \lim_{\varepsilon\to +0}\varepsilon^{-1}(G_{\varepsilon}(x, y) - G_0(x, y))}$ in terms of the boundary integral on ${\partial \Omega}$ of ${G_0(x, y)}$ . Our result may be regarded as a classical Hadamard variational formula for the Green’s functions of the elliptic boundary value problems.  相似文献   

12.
The main goal of this work is to prove that every non-negative strong solution u(x, t) to the problem $$u_t + (-\Delta)^{\alpha/2}{u} = 0 \,\, {\rm for} (x, t) \in {\mathbb{R}^n} \times (0, T ), \, 0 < \alpha < 2,$$ can be written as $$u(x, t) = \int_{\mathbb{R}^n} P_t (x - y)u(y, 0) dy,$$ where $$P_t (x) = \frac{1}{t^{n/ \alpha}}P \left(\frac{x}{t^{1/ \alpha}}\right),$$ and $$P(x) := \int_{\mathbb{R}^n} e^{i x\cdot\xi-|\xi |^\alpha} d\xi.$$ This result shows uniqueness in the setting of non-negative solutions and extends some classical results for the heat equation by Widder in [15] to the nonlocal diffusion framework.  相似文献   

13.
In this paper, we consider the Cauchy problem for a nonlinear parabolic system ${u^\epsilon_t - \Delta u^\epsilon + u^\epsilon \cdot \nabla u^\epsilon + \frac{1}{2}u^\epsilon\, {\rm div}\, u^\epsilon - \frac{1}{\epsilon}\nabla\, {\rm div}\, u^\epsilon = 0}$ in ${\mathbb {R}^3 \times (0,\infty)}$ with initial data in Lebesgue spaces ${L^2(\mathbb {R}^3)}$ or ${L^3(\mathbb {R}^3)}$ . We analyze the convergence of its solutions to a solution of the incompressible Navier?CStokes system as ${\epsilon \to 0}$ .  相似文献   

14.
The paper addresses the question of the existence of a locally self-similar blow-up for the incompressible Euler equations. Several exclusion results are proved based on the L p -condition for velocity or vorticity and for a range of scaling exponents. In particular, in N dimensions if in self-similar variables ${u \in L^p}$ and ${u \sim \frac{1}{t^{\alpha/(1+\alpha)}}}$ , then the blow-up does not occur, provided ${\alpha > N/2}$ or ${-1 < \alpha \leq N\,/p}$ . This includes the L 3 case natural for the Navier–Stokes equations. For ${\alpha = N\,/2}$ we exclude profiles with asymptotic power bounds of the form ${ |y|^{-N-1+\delta} \lesssim |u(y)| \lesssim |y|^{1-\delta}}$ . Solutions homogeneous near infinity are eliminated, as well, except when homogeneity is scaling invariant.  相似文献   

15.
Consider a smooth bounded domain ${\Omega \subseteq {\mathbb{R}}^3}$ , a time interval [0, T), 0?<?T?≤?∞, and a weak solution u of the Navier–Stokes system. Our aim is to develop several new sufficient conditions on u yielding uniqueness and/or regularity. Based on semigroup properties of the Stokes operator we obtain that the local left-hand Serrin condition for each ${t\in (0,T)}$ is sufficient for the regularity of u. Somehow optimal conditions are obtained in terms of Besov spaces. In particular we obtain such properties under the limiting Serrin condition ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ . The complete regularity under this condition has been shown recently for bounded domains using some additional assumptions in particular on the pressure. Our result avoids such assumptions but yields global uniqueness and the right-hand regularity at each time when ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ or when ${u(t)\in L^3(\Omega)}$ pointwise and u satisfies the energy equality. In the last section we obtain uniqueness and right-hand regularity for completely general domains.  相似文献   

16.
17.
In this paper we obtain an integral representation for the relaxation inBV(Ω; ? p ) of the functional $$u \mapsto \int\limits_\Omega {f(x.\nabla u(x))dx + \int\limits_{\sum _{(u)} } {\varphi (x,[u](x),v(x))dH_{N - 1} (x)} }$$ with respect to theBV weak * convergence.  相似文献   

18.
We prove that the problem of solving $$u_t = (u^{m - 1} u_x )_x {\text{ for }} - 1< m \leqq 0$$ with initial conditionu(x, 0)=φ(x) and flux conditions at infinity \(\mathop {\lim }\limits_{x \to \infty } u^{m - 1} u_x = - f(t),\mathop {\lim }\limits_{x \to - \infty } u^{m - 1} u_x = g(t)\) , admits a unique solution \(u \in C^\infty \{ - \infty< x< \infty ,0< t< T\} \) for every φεL1(R), φ≧0, φ≡0 and every pair of nonnegative flux functionsf, g ε L loc [0, ∞) The maximal existence time is given by $$T = \sup \left\{ {t:\smallint \phi (x)dx > \int\limits_0^t {[f} (s) + g(s)]ds} \right\}$$ This mixed problem is ill posed for anym outside the above specified range.  相似文献   

19.
We consider the evolution problem associated with a convex integrand ${f : \mathbb{R}^{Nn}\to [0,\infty)}$ satisfying a non-standard p, q-growth assumption. To establish the existence of solutions we introduce the concept of variational solutions. In contrast to weak solutions, that is, mappings ${u\colon \Omega_T \to \mathbb{R}^n}$ which solve $$ \partial_tu-{\rm div} Df(Du)=0 $$ weakly in ${\Omega_T}$ , variational solutions exist under a much weaker assumption on the gap q ? p. Here, we prove the existence of variational solutions provided the integrand f is strictly convex and $$\frac{2n}{n+2} < p \le q < p+1.$$ These variational solutions turn out to be unique under certain mild additional assumptions on the data. Moreover, if the gap satisfies the natural stronger assumption $$ 2\le p \le q < p+ {\rm min}\big \{1,\frac{4}{n} \big \},$$ we show that variational solutions are actually weak solutions. This means that solutions u admit the necessary higher integrability of the spatial derivative Du to satisfy the parabolic system in the weak sense, that is, we prove that $$u\in L^q_{\rm loc}\big(0,T; W^{1,q}_{\rm loc}(\Omega,\mathbb{R}^N)\big).$$   相似文献   

20.
This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, $$\partial_t u = \partial_{xx} u + f(x,u),$$ associated with a compactly supported initial datum. A typical nonlinearity we consider is ${f(x,u) = \mu_0 (\phi (x)) u(1-u)}$ , where??? 0 is a 1-periodic function and ${\phi}$ is a ${\mathcal{C}^1}$ increasing function that satisfies ${\lim_{x \to+\infty}\phi (x) = +\infty}$ and ${\lim_{x \to +\infty}\phi' (x) =0}$ . Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for u for large times, depending on the speed of the convergence of ${\phi}$ at infinity. If ${\phi}$ grows sufficiently slowly, then we prove that the spreading speed of u oscillates between two distinct values. If ${\phi}$ grows rapidly, then we compute explicitly a unique and well determined speed of propagation w ??, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号