首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用等离子喷涂法制备Ni3Al基涂层,分别以316L和Al2O3为摩擦偶件,考察25~800 ℃内摩擦偶件材料对涂层摩擦学行为的影响. 结果表明:在软金属Ag析出、BaF2/CaF2脆-塑性转变和摩擦氧化协同作用下,随温度升高Ni3Al/316L和Ni3Al/Al2O3摩擦副的摩擦系数和磨损率具有一致的变化规律,且Ni3Al/Al2O3摩擦副性能更佳. 25 ℃时,涂层与316L对摩时发生黏着磨损和磨粒磨损,而与高硬度的Al2O3对摩时发生脆性剥层和磨粒磨损,使涂层表面更粗糙导致较高的摩擦系数;Al2O3热导率较低,高接触应力作用下产生的大量摩擦热不能及时耗散,剥落材料贮存于剥落坑或黏附于磨损表面,使Ni3Al/Al2O3摩擦副具有较低的磨损率. 200~600 ℃时,高硬度的Al2O3对涂层的犁削作用较强导致Ni3Al/Al2O3摩擦副具有高的摩擦系数;而涂层在Al2O3碾压下发生塑性变形,使其具有较低的磨损率. 800 ℃时,高硬度的Al2O3促使磨损表面形成高氧化物含量的润滑膜,使Ni3Al/Al2O3摩擦副具有低的摩擦系数和高的磨损率.   相似文献   

2.
8km/s激光驱动飞片发射技术实验研究   总被引:2,自引:0,他引:2  
实验研究了激光驱动飞片技术中激光能量剖面和飞片靶金属膜层的力学特性对飞片的速度和完整性的影响,认为激光能量剖面整体呈“平顶型”的光束是发射高质量飞片的基础,同时飞片靶的膜基附着力、金属膜层的强度和韧性三者之间应保持良好的匹配才能得到完整的飞片。制备了基底/Cr/Al复合结构飞片靶,利用波长1 064nm、脉宽15ns的激光,将直径1mm、厚度3μm的铝飞片稳定驱动至8km/s。  相似文献   

3.
为了研究活性材料爆炸驱动反应特性,基于粉末压制成型工艺,制备了Al/PTFE、Al/Ni两种典型的活性材料及Al2O3/PTFE、Al2O3/PTFE/W惰性材料。通过爆炸驱动试验,并结合高速摄影、远红外热像仪以及峰值超压测试技术,分析了不同活性材料壳体装药爆炸火球、温度场分布及空气冲击波峰值超压等特性。同时,在炸药爆炸空气冲击波峰值超压经验计算模型中考虑了活性材料释放的化学能,分析了反应释放能量对空气冲击波的影响规律。结果表明:活性材料在爆炸驱动过程中经历了强加载条件下反应、产生碎片并向四周飞散、撞击钢板及后续反应等阶段。活性材料对炸药爆炸产生的空气冲击波具有强化作用,爆炸加载瞬间材料仅发生了部分化学反应。  相似文献   

4.
小型激光器驱动飞片冲击引爆炸药实验研究   总被引:5,自引:0,他引:5  
利用小型激光器驱动飞片技术成功起爆了PETN安全炸药。详细介绍了实验的原理、过程、实验装置、测试方法和实验结果。实验中 ,利用能量 2 0 5mJ、激光脉宽 9 5ns的激光脉冲 ,驱动厚度 5 5 m、直径约1 0mm铝飞片冲击起爆了密度 1 2g/cm3 的压装PETN炸药 ,冲击速度约 3~ 4 2km/s ,压力脉宽约 2 0 8ns。用简单的冲击起爆判据 (p2 =常数 )对实验结果进行了分析 ,结果表明 :实验结果是合理的 ,与理论分析是一致的。  相似文献   

5.
将石墨和硫酸钡按一定比例复合作为弱界面层,通过铺层-冷压-放电等离子烧结工艺制备了Al2O3/Graphite-BaSO4层状复合材料. 考察了复配润滑剂的组分对层状复合陶瓷在室温至800 ℃连续加热过程中自润滑性能的影响规律,并通过磨损表面分析探讨了其在宽温域下的协同润滑机制. 结果表明:通过复配在室温和中高温度段具有优异自润滑性能的固体润滑剂,并借助仿贝壳材料独特的层状结构特征,可有效改善氧化铝陶瓷在不同温度段的摩擦学性能,进而实现材料在较宽温度范围内的连续润滑. 基于润滑相组分优化的复合材料在室温至800 ℃温度范围内与Al2O3栓对摩时的摩擦系数可保持在0.28~0.48之间,比块体Al2O3陶瓷/Al2O3栓摩擦副的摩擦系数降低了近60%.   相似文献   

6.
对比研究了?100~100 ℃范围内聚四氟乙烯(PTFE)及三氧化二铝/聚四氟乙烯(Al2O3/PTFE)复合材料的摩擦学性能. 研究结果表明,PTFE因为蠕变,在升温过程中摩擦系数逐步降低,磨损率逐步升高. 而引入Al2O3填料会显著影响PTFE的摩擦学行为,Al2O3/PTFE的摩擦系数普遍比PTFE高,而磨损率比PTFE低. 摩擦学机理表明,滑动过程中形成的摩擦膜是决定摩擦学行为的关键因素. 这对极端工况条件下高分子复合材料的设计具有重要的指导意义.   相似文献   

7.
基于态型近场动力学理论进行复合陶瓷板淬火破坏过程力学建模与分析。引入热膨胀项反映材料的热致变形,基于物质点对的断裂定义损伤,构建三维非局部常规态型近场动力学热弹脆性模型,结合多速率显式积分法计算热-力耦合,实现热冲击荷载作用下陶瓷板起裂和裂纹扩展全过程的模拟。通过模拟典型淬火Al2O3陶瓷板的破坏过程,并与实验和其他数值结果对比,验证了该模型和方法。使用该模型研究了含不同α-Al2O3纤维掺杂比率的Al2O3复合陶瓷板淬火破坏过程,结果表明,断裂韧性的提高显著减少了裂纹数量并延后起裂时间;含5%α-Al2O3纤维掺杂比率的复合陶瓷材料综合力学性能最优,能够有效提升构件抵抗热冲击荷载能力。  相似文献   

8.
为研究多孔材料对可燃气体的抑爆效果,选取了3类6种多孔材料分别组合后进行实验研究。以甲烷/空气预混气体作为研究对象,利用自制薄型铁环将多孔材料固定在密闭容器管道系统内,对比分析了薄型铁环、单层型多孔材料、双层组合型多孔材料和三层组合型多孔材料的抑爆效果。结果表明:薄型铁环增强了气体爆炸强度,铁环后爆炸压力最大;多孔材料抑爆效果明显,双层组合型多孔材料抑爆效果相比单层型多孔材料和三层组合型多孔材料稳定;抑爆效果最佳的组合型多孔材料为Al2O3 10 mm/30 PPI+SiC 20 mm/20 PPI,爆炸压力抑制效果最佳的组合型多孔材料为Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/10 PPI。  相似文献   

9.
利用激光熔覆技术在45钢表面制备了纳米Sm2O3增强TiC/Co基复合涂层,系统研究了纳米Sm2O3对TiC/Co基复合涂层宏观形貌、微观组织和耐磨性能的影响. 结果表明:纳米Sm2O3增强TiC/Co基复合涂层主要由γ-Co、Cr23C6、TiC、Co3Ti和Fe7Sm相组成. 纳米Sm2O3增强TiC/Co基复合涂层呈现出与基体形成更加优良的冶金结合和优良的润湿性,显微组织明显细小均匀. 随着纳米Sm2O3含量增加,复合涂层的显微硬度和耐磨性能均先增加后降低,当纳米Sm2O3质量分数为1.5%时,复合涂层的显微硬度和耐磨性能分别提高了10.1%和17.1%. 添加纳米Sm2O3的复合涂层的磨损机理均为磨粒磨损. 应用多元统计分析的结果也表明纳米Sm2O3对TiC/Co基合金涂层有着显著影响.   相似文献   

10.
首先采用高温固相反应法合成了由纳米球状结构紧密堆积的微米级粉体Ag2Nb4O11,然后通过粉末冶金技术制备了添加铌酸银(Ag2Nb4O11)的NiAl基复合材料(NABO20,NiAl-20%Ag2Nb4O11),考察其对复合材料显微结构、力学及摩擦学性能的影响. 结果表明:热压烧结过程中,Ag2Nb4O11发生高温分解及与C发生氧化还原反应,形成了NbC和Ag相. 铌酸银(Ag2Nb4O11)的添加使得复合材料的密度略有增加,并且显著改善了NiAl基复合材料的显微硬度. 在高温摩擦条件下(800 ℃),由于NABO20磨损表面和Al2O3对偶球表面均形成完整光滑的润滑膜(Nb2O5、Al2O3、Ag2Nb4O11、AgNbO3和AgNb3O8),两层膜的存在阻隔了对偶球和复合材料的直接接触,抑制了磨损进程,从而有效地提高了复合材料的耐磨性能.   相似文献   

11.
采用混合压制烧结法制备了4种不同TiH2含量的铝/氢化钛/聚四氟乙烯(Al/TiH2/PTFE)试件,并基于分离式霍普金森杆和落锤冲击实验,对反应材料的动态压缩力学性能、撞击感度及反应特性进行了研究。实验结果表明,4种材料均存在应变硬化和应变率硬化效应,随加载应变率的提高,材料屈服强度和硬化模量增大。相同加载应变率下,材料屈服强度随TiH2含量的增加而增高,材料压缩强度则先增高后降低,TiH2质量分数为5%时材料压缩强度达到最大值166.4 MPa,比Al/PTFE强度提高6.8%。在一定含量范围内(小于5%),加入TiH2有助于提高Al/PTFE材料撞击感度和能量释放水平,而TiH2质量分数大于10%时,材料撞击感度和反应剧烈程度则逐渐降低。与Al/PTFE相比,含TiH2试件反应火光周围有明显的火星喷溅现象,且此现象TiH2含量越高越显著。  相似文献   

12.
为了研究实战环境中多个钨球破片对导弹战斗部(柱壳装药)的冲击起爆问题,采用AUTODYN-3D数值模拟软件,基于单破片撞击柱壳装药模型,建立多破片撞击柱壳装药的模型,开展了不同钨球个数、空间碰撞位置间隔(撞击角θ、轴向球心距l)及时间间隔对冲击起爆特性影响的数值模拟,获得了带壳B炸药的起爆速度阈值。结果表明:相同条件下,随着钨球个数的增加、空间碰撞位置间隔的减小,起爆速度阈值逐渐减小,6个钨球同时撞击的起爆速度阈值约为单个作用下的50%;双钨球作用下,柱壳装药相较于平板装药更难以起爆;双钨球间隔撞击柱壳装药时,起爆速度阈值均随着撞击时间间隔的增大而先减小后增大,最小起爆速度阈值约为同时撞击时的95%,且|θ2|<|θ1| (θ1为第1个钨球的撞击角,θ2为第2个钨球的撞击角)时更容易起爆柱壳装药。  相似文献   

13.
纳米材料可有效改善水泥基的力学性能和耐久性,为探索纳米SiO2、Fe2O3对混凝土材料的增强机理,研制力学性能更优的混凝土,制备了0%~2.0%掺量范围内单掺纳米SiO2、纳米Fe2O3、复掺纳米SiO2和纳米Fe2O3的混凝土试件,对养护龄期为7 d及28 d的混凝土力学性能开展试验研究,结果表明:纳米材料总掺量为1.5%且纳米SiO2掺量为1.0%、纳米Fe2O3掺量为0.5%时改性混凝土的力学性能达到最优,该复掺比例改性混凝土比普通混凝土及同掺量的单掺改性混凝土具有更优异的力学性能。采用冷场发射扫描电镜对纳米改性混凝土内部微观形貌进行观察,并借助能量分散谱仪分析纳米改性混凝土的化学成分,结果表明掺入的纳米SiO2及纳米Fe2O3会发生晶核作用并与Ca(OH...  相似文献   

14.
利用金属箔电爆炸驱动聚酯薄膜飞片产生短脉冲冲击波的加载技术(电炮),依据DRM(Delayed Robbins-Monro)试验程序,研究了以TATB/HMX为基的高聚物粘结炸药的短脉冲冲击起爆特性,获得了其50%起爆概率条件下的冲击起爆阈值和100%起爆的最小起爆阈值。利用光纤探针/光电转换器/示波器接收技术,研究了冲击起爆压力幅值和脉宽对该炸药到爆轰距离的影响,得到了相应的Pop关系。  相似文献   

15.
利用金属箔电爆炸驱动聚酯薄膜飞片产生短脉冲冲击波的加载技术(电炮),依据DRM(Delayed Robbins-Monro)实验程序,研究了炸药TATB/粘结剂在各种激励条件下的短脉冲冲击起爆特性,获得了其50%起爆概率条件下的短脉冲冲击起爆阈值,及实验条件下其短脉冲冲击起爆判据为:lnp=0.205-0.87lnτ。并与相同条件下TATB/HMX为基的高聚物粘结炸药的短脉冲冲击起爆阈值进行了比较。结果表明飞片面积和压力脉宽均对炸药的短脉冲冲击起爆阈值有重要影响,与TATB/HMX为基的高聚物粘结炸药相比,TATB/粘结剂更钝感。  相似文献   

16.
采用高精度多功能微动磨损试验机(MFC-01),结合电化学和摩擦性能测试以及扫描电镜(SEM)和X射线光电子能谱(XPS)分析等,研究了极化作用对6082铝合金在3.5%NaCl溶液中微动腐蚀行为的影响. 结果表明:材料在阳极电位极化下,表面更易发生滑动,滑移区扩展,混合区和部分滑移区范围收窄;微动摩擦系数则随极化电位正移逐渐减小、在自腐蚀电位达到最小值、之后回升,阴极电位下摩擦系数大于阳极电位下的数值. 在阴极极化和自腐蚀电位极化下,微动加速了磨损区域的腐蚀,使得腐蚀电流密度增加;而在阳极极化下,微动减弱了磨损区域的腐蚀、腐蚀电流减少. 材料的整体损失速率随着外加电位的正移而增大. 在阴极极化和自腐蚀电位极化下,材料的磨损机制主要表现为剥层机制和磨粒磨损,磨损区域腐蚀产物主要为Al2O3;在阳极极化下,以腐蚀磨损和磨粒磨损为主要特征,磨损区域腐蚀产物主要为Al2O3、Al(OH)3和AlCl3.   相似文献   

17.
采用电爆炸箔驱动飞片加载方式,测试了纳米TATB与某敏感炸药复合体系的50%冲击起爆电 压阈值,讨论了TATB微观结构参数与复合物冲击起爆阈值之间关系的几种观点。采用造型粉数学建模-表 面形貌表征-冲击起爆阈值实验验证的方法,探讨了复合体系的起爆机制。结果表明:复合体系中各组分的分 布方式与纳米网格TATB聚集体尺寸大小密切相关,决定了复合物中敏感炸药所受短脉冲作用的压力大小 和时间长短,这可能是导致50%起爆阈值变化的关键因素。  相似文献   

18.
爆轰合成过程中采用Ce(NO3)3·6H2O制备的可爆药剂,并利用X射线衍射仪(XRD)和透射电子显微镜(TEM)对合成的纳米CeO2粉末进行了检测,研究了起爆方式对于合成产物结晶化度、粒径和形貌的影响。结果表明,采用Ce(NO3)3·6H2O制备的可爆药剂,可以合成立方晶系的球形纳米CeO2; 提高可爆药剂的爆速,可有效降低纳米CeO2的粒径,得到球形化更好的纳米粒子。  相似文献   

19.
通过高能球磨和电火花等离子烧结,成功制备了(xAl-WC)-6Co(x=0.2,0.33)三元复合材料,并研究了铝掺杂WC-Co基硬质合金在空气环境中500、600和700 ℃下的摩擦学性能. 所制备的铝掺杂WC-Co,基体由WC和Co耦合而成,Al在烧结过程中发生氧化,基体上弥散分布细小的Cr3C2和Al2O3增强相. (0.2Al-WC-6Co)的硬度与断裂韧性明显高于WC-6Co, (0.33Al-WC)-6Co的断裂韧性较低. 脆性钨类氧化物的形成是Al-WC-Co硬质合金高温磨损的主要原因. 随着Al元素加入量的提高,硬质合金的高温抗软化性能和抗氧化性能提高,磨损表面的剥落和破碎行为减弱,材料的高温耐磨性能提高.   相似文献   

20.
为研究Al(OH)3粉体抑爆剂对聚丙烯腈(polyacrylonitrile, PAN)粉尘爆炸的抑制作用,利用透明管道爆炸传播测试系统,研究不同含量的Al(OH)3对PAN粉尘爆炸火焰传播形态、温度等参数的影响,并采用扫描电镜、热重分析仪、傅里叶红外光谱仪研究Al(OH)3抑制PAN粉尘爆炸的微观特征,总结出Al(OH)3对PAN粉尘爆炸的抑制机理。测试结果表明,随着Al(OH)3质量分数的增加,PAN粉尘爆燃的最大火焰传播距离和传播速度逐渐减小。同时压力监控及温度监控结果显示,随着Al(OH)3质量分数的增加,PAN粉尘的最大爆炸压力及最大温度均逐渐减小,由此验证了Al(OH)3对PAN粉尘爆炸的抑制作用,且60%质量比的Al(OH)3的抑制效果最好。通过对PAN粉尘爆炸固态产物表征及热分析的研究,从物理和化学两个方面分析了Al(OH)3对PAN粉尘火焰的抑制机理,物理抑制包括包覆、吸热降温、气体惰化3种方式,化学抑制主要通过消耗维持燃烧爆炸连锁反应的关键自由基?O和?OH减少了自由基?H、?OH与?O之间的放热反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号