首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A short overview on the direct multi-elliptic interpolation and the related meshless methods for solving partial differential equations is given. A new technique is proposed which produces a biharmonic interpolation along the boundary and solves the original problem inside the domain. An error estimation is also derived. To implement the method, quadtree-based multi-level methods are used. The approach avoids the use of large, dense and ill-conditioned matrices and significantly reduces the computational cost.  相似文献   

2.
We present guaranteed and computable both sided error bounds for the discontinuous Galerkin (DG) approximations of elliptic problems. These estimates are derived in the full DG-norm on purely functional grounds by the analysis of the respective differential problem, and thus, are applicable to any qualified DG approximation. Based on the triangle inequality, the underlying approach has the following steps for a given DG approximation: (1) computing a conforming approximation in the energy space using the Oswald interpolation operator, and (2) application of the existing functional a posteriori error estimates to the conforming approximation. Various numerical examples with varying difficulty in computing the error bounds, from simple problems of polynomial-type analytic solution to problems with analytic solution having sharp peaks, or problems with jumps in the coefficients of the partial differential equation operator, are presented which confirm the efficiency and the robustness of the estimates.  相似文献   

3.
The paper focuses on the numerical study of electromagnetic scattering from two-dimensional (2D) large partly covered cavities, which is described by the Helmholtz equation with a nonlocal boundary condition on the aperture. The classical five-point finite difference method is applied for the discretization of the Helmholtz equation and a linear approximation is used for the nonlocal boundary condition. We prove the existence and uniqueness of the numerical solution when the medium in the cavity is y-direction layered or the number of the mesh points on the aperture is large enough. The fast algorithm proposed in Bao and Sun (2005) [2] for open cavity models is extended to solving the partly covered cavity problem with (vertically) layered media. A preconditioned Krylov subspace method is proposed to solve the partly covered cavity problem with a general medium, in which a layered medium model is used as a preconditioner of the general model. Numerical results for several types of partly covered cavities with different wave numbers are reported and compared with those by ILU-type preconditioning algorithms. Our numerical experiments show that the proposed preconditioning algorithm is more efficient for partly covered cavity problems, particularly with large wave numbers.  相似文献   

4.
I-Liang Chern  Yu-Chen Shu 《PAMM》2007,7(1):1141501-1141502
We propose a coupling interface method (CIM) under Cartesian grid for solving elliptic complex interface problems in arbitrary d dimensions, where the coefficients, the source terms, and the solutions may be discontinuous or singular across the interfaces. It consists of a first-order version (CIM1) and a second-order version (CIM2). In one dimension, this finite difference method at a grid point adjacent to the interface is derived based on piecewise linear (CIM1) or quadratic (CIM2) approximation of the solution and two jump conditions. The method is extended to high dimensions through a dimensionby-dimension approach. To connect information from each dimension, a coupled equation for the principal derivatives is derived through the jump conditions in each coordinate direction. For CIM2, one-side interpolation for cross derivatives is need. This coupling approach reduces number of grid point in the finite difference stencil. The hybrid method uses CIM1 or CIM2 adaptly for complex interface. Numerical tests demonstrate that CIM1 and CIM2 are respectively first order and second order in the maximal norm with less error as compared with other methods. In addition, the hybrid CIM can solve complex interface problems in two and three dimensions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

6.
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. Optimized Schwarz methods employ a first or higher order boundary condition along the artificial interface to accelerate convergence. In the literature, the analysis of optimized Schwarz methods relies on Fourier analysis and so the domains are restricted to be regular (rectangular). In this paper, we express the interface operator of an optimized Schwarz method in terms of Poincare-Steklov operators. This enables us to derive an upper bound of the spectral radius of the operator arising in this method of 1−O(h1/4) on a class of general domains, where h is the discretization parameter. This is the predicted rate for a second order optimized Schwarz method in the literature on rectangular subdomains and is also the observed rate in numerical simulations.  相似文献   

7.
Summary. I derive a posteriori error estimates for two-point boundary value problems and parabolic equations in one dimension based on interpolation error estimates. The interpolation error estimates are obtained from an extension of the error formula for the Lagrange interpolating polynomial in the case of symmetrically-spaced interpolation points. From this formula pointwise and seminorm a priori estimates of the interpolation error are derived. The interpolant in conjunction with the a priori estimates is used to obtain asymptotically exact a posteriori error estimates of the interpolation error. These a posteriori error estimates are extended to linear two-point boundary problems and parabolic equations. Computational results demonstrate the convergence of a posteriori error estimates and their effectiveness when combined with an hp-adaptive code for solving parabolic systems. Received April 17, 2000 / Revised version received September 25, 2000 / Published online May 30, 2001  相似文献   

8.
Summary. In this paper we propose and analyze an efficient discretization scheme for the boundary reduction of the biharmonic Dirichlet problem on convex polygonal domains. We show that the biharmonic Dirichlet problem can be reduced to the solution of a harmonic Dirichlet problem and of an equation with a Poincaré-Steklov operator acting between subspaces of the trace spaces. We then propose a mixed FE discretization (by linear elements) of this equation which admits efficient preconditioning and matrix compression resulting in the complexity . Here is the number of degrees of freedom on the underlying boundary, is an error reduction factor, or for rectangular or polygonal boundaries, respectively. As a consequence an asymptotically optimal iterative interface solver for boundary reductions of the biharmonic Dirichlet problem on convex polygonal domains is derived. A numerical example confirms the theory. Received September 1, 1995 / Revised version received February 12, 1996  相似文献   

9.
In this paper, a positive definite Balancing Neumann–Neumann (BNN) solver for the linear elasticity system is constructed and analyzed. The solver implicitly eliminates the interior degrees of freedom in each subdomain and solves iteratively the resulting Schur complement, involving only interface displacements, using a BNN preconditioner based on the solution of a coarse elasticity problem and local elasticity problems with natural and essential boundary conditions. While the Schur complement becomes increasingly ill-conditioned as the materials becomes almost incompressible, the BNN preconditioned operator remains well conditioned. The main theoretical result of the paper shows that the proposed BNN method is scalable and quasi-optimal in the constant coefficient case. This bound holds for material parameters arbitrarily close to the incompressible limit. While this result is due to an underlying mixed formulation of the problem, both the interface problem and the preconditioner are positive definite. Numerical results in two and three dimensions confirm these good convergence properties and the robustness of the methods with respect to the almost incompressibility of the material.  相似文献   

10.
Li  Zhilin 《Numerical Algorithms》1997,14(4):269-293
A second order difference method is developed for the nonlinear moving interface problem of the form $$u_t + \lambda uu_x = \left( {\beta u_x } \right)_x - f\left( {x,t} \right),x \in \left[ {\left. {0,\alpha } \right) \cup \left( {\left. {\alpha ,1} \right]} \right.,} \right.$$ $$\frac{{d\alpha }}{{dt}} = w\left( {t,\alpha ;u,u_x } \right),$$ , where α (t) is the moving interface. The coefficient β(x,t) and the source term f(x,t) can be discontinuous across α (t) and moreover, f(x,t) may have a delta or/and delta-prime function singularity there. As a result, although the equation is parabolic, the solution u and its derivatives may be discontinuous across α (t). Two typical interface conditions are considered. One condition occurs in Stefan-like problems in which the solution is known on the interface. A new stable interpolation strategy is proposed. The other type occurs in a one-dimensional model of Peskin’s immersed boundary method in which only jump conditions are given across the interface. The Crank-Nicolson difference scheme with modifications near the interface is used to solve for the solution u(x,t) and the interface α (t) simultaneously. Several numerical examples, including models of ice-melting and glaciation, are presented. Second order accuracy on uniform grids is confirmed both for the solution and the position of the interface.  相似文献   

11.
Summary. In this paper we develop an efficient Schur complement method for solving the 2D Stokes equation. As a basic algorithm, we apply a decomposition approach with respect to the trace of the pressure. The alternative stream function-vorticity reduction is also discussed. The original problem is reduced to solving the equivalent boundary (interface) equation with symmetric and positive definite operator in the appropriate trace space. We apply a mixed finite element approximation to the interface operator by iso triangular elements and prove the optimal error estimates in the presence of stabilizing bubble functions. The norm equivalences for the corresponding discrete operators are established. Then we propose an asymptotically optimal compression technique for the related stiffness matrix (in the absence of bubble functions) providing a sparse factorized approximation to the Schur complement. In this case, the algorithm is shown to have an optimal complexity of the order , q = 2 or q = 3, depending on the geometry, where N is the number of degrees of freedom on the interface. In the presence of bubble functions, our method has the complexity arithmetical operations. The Schur complement interface equation is resolved by the PCG iterations with an optimal preconditioner. Received March 20, 1996 / Revised version received October 28, 1997  相似文献   

12.
Summary. Interior error estimates are derived for a wide class of nonconforming finite element methods for second order scalar elliptic boundary value problems. It is shown that the error in an interior domain can be estimated by three terms: the first one measures the local approximability of the finite element space to the exact solution, the second one measures the degree of continuity of the finite element space (the consistency error), and the last one expresses the global effect through the error in an arbitrarily weak Sobolev norm over a slightly larger domain. As an application, interior superconvergences of some difference quotients of the finite element solution are obtained for the derivatives of the exact solution when the mesh satisfies some translation invariant condition. Received December 29, 1994  相似文献   

13.
Crouzeix-Raviart type finite elements on anisotropic meshes   总被引:47,自引:0,他引:47  
Summary. The paper deals with a non-conforming finite element method on a class of anisotropic meshes. The Crouzeix-Raviart element is used on triangles and tetrahedra. For rectangles and prismatic (pentahedral) elements a novel set of trial functions is proposed. Anisotropic local interpolation error estimates are derived for all these types of element and for functions from classical and weighted Sobolev spaces. The consistency error is estimated for a general differential equation under weak regularity assumptions. As a particular application, an example is investigated where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges. A numerical test is described. Received May 19, 1999 / Revised version received February 2, 2000 / Published online February 5, 2001  相似文献   

14.
Summary In this paper we derive error estimates for infinite element method used in the approximation of solutions of interface problems. Furthermore, approximations of stress intensity factors are given. The infinite element method may be considered as a certain scheme of mesh refinement, but it has the advantages that the refinement is easy to be constructed that the stiffness matrix can be calculated efficiently, and that an approximate solution which has a singularity at the singular point can be also obtained.  相似文献   

15.
We survey multilevel iterative methods applied for solving large sparse systems with matrices, which depend on a level parameter, such as arise by the discretization of boundary value problems for partial differential equations when successive refinements of an initial discretization mesh is used to construct a sequence of nested difference or finite element meshes.We discuss various two-level (two-grid) preconditioning techniques, including some for nonsymmetric problems. The generalization of these techniques to the multilevel case is a nontrivial task. We emphasize several ways this can be done including classical multigrid methods and a recently proposed algebraic multilevel preconditioning method. Conditions for which the methods have an optimal order of computational complexity are presented.On leave from the Institute of Mathematics, and Center for Informatics and Computer Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria. The research of the second author reported here was partly supported by the Stichting Mathematisch Centrum, Amsterdam.  相似文献   

16.
Summary For the Laplace equation with Signorini boundary conditions two equivalent boundary variational inequality formulations are deduced. We investigate the discretization by a boundary element Galerkin method and obtain quasi-optimal asymptotic error estimates in the underlying Sobolev spaces. An algorithm based on the decomposition-coordination method is used to solve the discretized problems. Numerical examples confirm the predicted rate of convergence.  相似文献   

17.
This article is to discuss the linear (which was proposed in  and ) and bilinear immersed finite element (IFE) methods for solving planar elasticity interface problems with structured Cartesian meshes. Basic features of linear and bilinear IFE functions, including the unisolvent property, will be discussed. While both methods have comparable accuracy, the bilinear IFE method requires less time for assembling its algebraic system. Our analysis further indicates that the bilinear IFE functions are guaranteed to be applicable to a larger class of elasticity interface problems than linear IFE functions. Numerical examples are provided to demonstrate that both linear and bilinear IFE spaces have the optimal approximation capability, and that numerical solutions produced by a Galerkin method with these IFE functions for elasticity interface problem also converge optimally in both L2L2 and semi-H1H1 norms.  相似文献   

18.
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal -norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical. Received July 7, 1996 / Revised version received March 3, 1997  相似文献   

19.
《Quaestiones Mathematicae》2013,36(1):121-138
Abstract

In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was designed to approximate the differential operator in question. Very often the approaches for constructing these operators had limited scope in the sense that it was difficult to extend them to solve even simple one-dimensional singularly perturbed partial differential equations. However, in some of our most recent work, we have successfully designed a class of FOFDMs and extended them to solve singularly perturbed time-dependent partial differential equations. In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is analyzed for convergence. Our method is uniformly convergent with order one and two, respectively, in time and space, with respect to the perturbation parameters. Some numerical experiments supporting the theoretical investigations are also presented.  相似文献   

20.
Summary This paper deals with an elliptic boundary value problem posed in the plane, with variable coefficients, but whose restriction to the exterior of a bounded domain reduces to a Helmholtz equation. We consider a mixed variational formulation in a bounded domain that contains the heterogeneous medium, coupled with a boundary integral method applied to the Helmholtz equation in . We utilize suitable auxiliary problems, duality arguments, and Fredholm alternative to show that the resulting formulation of the problem is well posed. Then, we define a corresponding Galerkin scheme by using rotated Raviart-Thomas subspaces and spectral elements (on the interface). We show that the discrete problem is uniquely solvable and convergent and prove optimal error estimates. Finally we illustrate our analysis with some results from computational experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号