首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Jari Toivanen 《PAMM》2007,7(1):1024001-1024002
Numerical methods are developed for pricing European and American options under Kou's jump-diffusion model which assumes the price of the underlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size is log-double-exponentially distributed. The price of a European option is given by a partial integro-differential equation (PIDE) while American options lead to a linear complementarity problem (LCP) with the same operator. Spatial differential operators are discretized using finite differences on nonuniform grids and time stepping is performed using the implicit Rannacher scheme. For the evaluation of the integral term easy to implement recursion formulas are derived which have optimal computational cost. When pricing European options the resulting dense linear systems are solved using a stationary iteration. Also for pricing American options similar iterations can be employed. A numerical experiment demonstrates that the described method is very efficient as accurate option prices can be computed in a few milliseconds on a PC. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A penalty method for American options with jump diffusion processes   总被引:1,自引:0,他引:1  
Summary. The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint is imposed by using a penalty method. We derive sufficient conditions for global convergence of the discrete penalized equations at each timestep. Finally, we present numerical tests which illustrate such convergence.Mathematics Subject Classification (1991): 65M12, 65M60, 91B28Correspondence to: P.A. Forsyth  相似文献   

3.
An efficient option pricing method based on Fourier-cosine expansions was presented by Fang and Oosterlee for European options in 2008,and later,this method was also used by them to price early-exercis...  相似文献   

4.
基于快速均值回归随机波动率模型, 研究双限期权的定价问题, 同时推导了考虑均值回归随机波动率的双限期权的定价公式。 根据金融市场中SPDR S&P 500 ETF期权的隐含波动率数据和标的资产的历史收益数据, 对快速均值回归随机波动率模型中的两个重要参数进行估计。 利用估计得到的参数以及定价公式, 对双限期权价格做了数值模拟。 数值模拟结果发现, 考虑了随机波动率之后双限期权的价格在标的资产价格偏高的时候会小于基于常数波动率模型的期权价格。  相似文献   

5.
Barrier options are standard exotic options traded in the financial market. These instruments are different from the vanilla options as the payoff of the option depends on whether the underlying asset price reaches a predetermined barrier level, during the life of the option. In this work, we extend the vanilla call barrier options to power call barrier options where the underlying asset price is raised to a constant power, within the standard Black–Scholes framework. It is demonstrated that the pricing of the power barrier options can be obtained from standard barrier options by a transformation which involves the power contract and a adjusted barrier. Numerical results are considered.  相似文献   

6.
We consider the problem of valuing European options in a complete market but with incomplete data. Typically, when the underlying asset dynamics is not specified, the martingale probability measure is unknown. Given a consensus on the actual distribution of the underlying price at maturity, we derive an upper bound on the call option price by putting two kinds of restrictions on the pricing probability measure. First, we put a restriction on the second risk-neutral moment of the underlying asset terminal value. Second, from equilibrium pricing arguments one can put a monotonicity restriction on the Radon-Nikodym density of the pricing probability with respect to the true probability measure. This density is restricted to be a nonincreasing function of the underlying price at maturity. The bound appears then as the solution of a constrained optimization problem and we adopt a duality approach to solve it. Explicit bounds are provided for the call option. Finally, we provide a numerical example.  相似文献   

7.
This paper studies pricing derivatives in a componentwise semi-Markov (CSM) modulated market. We consider a financial market where the asset price dynamics follows a regime switching geometric Brownian motion model in which the coefficients depend on finitely many age-dependent semi-Markov processes. We further allow the volatility coefficient to depend on time explicitly. Under these market assumptions, we study locally risk minimizing pricing of a class of European options. It is shown that the price function can be obtained by solving a non-local Black–Scholes–Merton-type PDE. We establish existence and uniqueness of a classical solution to the Cauchy problem. We also find another characterization of price function via a system of Volterra integral equation of second kind. This alternative representation leads to computationally efficient methods for finding price and hedging. An explicit expression of quadratic residual risk is also obtained.  相似文献   

8.
In this paper, we consider the pricing of vulnerable options when the underlying asset follows a stochastic volatility model. We use multiscale asymptotic analysis to derive an analytic approximation formula for the price of the vulnerable options and study the stochastic volatility effect on the option price. A numerical experiment result is presented to demonstrate our findings graphically.  相似文献   

9.
A general framework is formulated to price various forms of European style multi‐asset barrier options and occupation time derivatives with one state variable having the barrier feature. Based on the lognormal assumption of asset price processes, the splitting direction technique is developed for deriving the joint density functions of multi‐variate terminal asset prices with provision for single or double barriers on one of the state variables. A systematic procedure is illustrated whereby multi‐asset option price formulas can be deduced in a systematic manner as extensions from those of their one‐asset counterparts. The formulation has been applied successfully to derive the analytic price formulas of multi‐asset options with external two‐sided barriers and sequential barriers, multi‐asset step options and delayed barrier options. The successful numerical implementation of these price formulas is demonstrated.  相似文献   

10.
We consider exponential time integration schemes for fast numerical pricing of European, American, barrier and butterfly options when the stock price follows a dynamics described by a jump-diffusion process. The resulting pricing equation which is in the form of a partial integro-differential equation is approximated in space using finite elements. Our methods require the computation of a single matrix exponential and we demonstrate using a wide range of numerical tests that the combination of exponential integrators and finite element discretisations with quadratic basis functions leads to highly accurate algorithms for cases when the jump magnitude is Gaussian. Comparison with other time-stepping methods are also carried out to illustrate the effectiveness of our methods.  相似文献   

11.
We consider the American option pricing problem in the case where the underlying asset follows a jump‐diffusion process. We apply the method of Jamshidian to transform the problem of solving a homogeneous integro‐partial differential equation (IPDE) on a region restricted by the early exercise (free) boundary to that of solving an inhomogeneous IPDE on an unrestricted region. We apply the Fourier transform technique to this inhomogeneous IPDE in the case of a call option on a dividend paying underlying to obtain the solution in the form of a pair of linked integral equations for the free boundary and the option price. We also derive new results concerning the limit for the free boundary at expiry. Finally, we present a numerical algorithm for the solution of the linked integral equation system for the American call price, its delta and the early exercise boundary. We use the numerical results to quantify the impact of jumps on American call prices and the early exercise boundary.  相似文献   

12.
In this paper, we present an integral equation approach for the valuation of American-style installment derivatives when the payment plan is assumed to be a continuous function of the asset price and time. The contribution of this study is threefold. First, we show that in the Black-Scholes model the option pricing problem can be formulated as a free boundary problem under very general conditions on payoff structure and payment schedule. Second, by applying a Fourier transform-based solution technique, we derive a system of coupled recursive integral equations for the pair of free boundaries along with an analytic representation of the option price. Third, based on these results, we propose a unified framework which generalizes the existing methods and is capable of dealing with a wide range of monotonic payoff functions and continuous payment plans. Finally, by using the illustrative example of American vanilla installment call options, an explicit pricing formula is obtained for time-varying payment schedules.  相似文献   

13.
期权作为一种金融衍生产品,在欧美国家一直很受欢迎.由于其规避风险的特性,期权也吸引了中国投资者的兴趣.基于市场的需求,2015年初,上海证券交易所推出了中国首批期权产品,期权定价问题的研究热潮正席卷全球.本文研究的美式回望期权,是一种路径相关的期权,其支付函数不仅依赖于标的资产的现值,也依赖其历史最值.分析回望期权的特点,不难发现:1)这类期权空间变量的变化范围为二维无界不规则区域,难以应用数值方法直接求解;2)最佳实施边界未知,使得该问题变得高度非线性.本文的主要工作就是解决这两个困难,得到回望期权和最佳实施边界的数值逼近结果.现有的处理问题1)的有效方法是采用标准变量替换、计价单位变换以及Landau变换将定价模型化为一个[0,1]区间上的非线性抛物问题,本文也将沿用这些技巧处理问题1).进一步,采用有限元方法离散简化后的定价模型,并论证了数值解的非负性,提出了利用Newton法求解离散化的非线性系统.最后,通过数值模拟,验证了本文所提算法的高效性和准确性.  相似文献   

14.
We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of Schöbel and Zhu (1999) by including stochastic interest rates. Moreover, we allow all driving model factors to be instantaneously correlated with each other, i.e. we allow for a general correlation structure between the instantaneous interest rates, the volatilities and the underlying stock returns. As insurance products often incorporate long-term exposures, they are typically more sensitive to changes in the interest rates, volatility and currencies. Therefore, having the flexibility to correlate the underlying asset price with both the stochastic volatility and the stochastic interest rates, yields a realistic model which is of practical importance for the pricing and hedging of such long-term contracts. We show that European options, typically used for the calibration of the model to market prices, and forward starting options can be priced efficiently and in closed-form by means of Fourier inversion techniques. We extensively discuss the numerical implementation of these pricing formulas, allowing for a fast and accurate valuation of European and forward starting options. The model will be especially useful for the pricing and risk management of insurance contracts and other exotic derivatives involving long-term maturities.  相似文献   

15.
In this paper, we present a Quasi-Monte Carlo approach for pricingEuropean-style Asian options, i.e. for options whose pay-offdepends on the average price of the underlying asset where theaverage is extended over a fixed period up to the maturity date.Following a recent development in mathematical finance, we assumethat the log returns of the asset are not normally but hyperbolicallydistributed. This hypothesis is approved by several authorswith different statistic tests on real financial data. The aimof this paper is to advance the hyperbolic model to the pricingof Asian options, since there only exist pricing formulae forplain vanilla options and some types of exotic options (e.g.power call options, barrier options) so far. We show how onecan obtain prices of general Asian options in such incompletemarkets in an efficient way.  相似文献   

16.
ABSTRACT

In this article, we consider the problem of pricing lookback options in certain exponential Lévy market models. While in the classic Black-Scholes models the price of such options can be calculated in closed form, for more general asset price model, one typically has to rely on (rather time-intense) Monte-Carlo or partial (integro)-differential equation (P(I)DE) methods. However, for Lévy processes with double exponentially distributed jumps, the lookback option price can be expressed as one-dimensional Laplace transform (cf. Kou, S. G., Petrella, G., & Wang, H. (2005). Pricing path-dependent options with jump risk via Laplace transforms. The Kyoto Economic Review, 74(9), 1–23.). The key ingredient to derive this representation is the explicit availability of the first passage time distribution for this particular Lévy process, which is well-known also for the more general class of hyper-exponential jump diffusions (HEJDs). In fact, Jeannin and Pistorius (Jeannin, M., & Pistorius, M. (2010). A transform approach to calculate prices and Greeks of barrier options driven by a class of Lévy processes. Quntitative Finance, 10(6), 629–644.) were able to derive formulae for the Laplace transformed price of certain barrier options in market models described by HEJD processes. Here, we similarly derive the Laplace transforms of floating and fixed strike lookback option prices and propose a numerical inversion scheme, which allows, like Fourier inversion methods for European vanilla options, the calculation of lookback options with different strikes in one shot. Additionally, we give semi-analytical formulae for several Greeks of the option price and discuss a method of extending the proposed method to generalized hyper-exponential (as e.g. NIG or CGMY) models by fitting a suitable HEJD process. Finally, we illustrate the theoretical findings by some numerical experiments.  相似文献   

17.
We consider high-order compact (HOC) schemes for quasilinear parabolic partial differential equations to discretise the Black–Scholes PDE for the numerical pricing of European and American options. We show that for the heat equation with smooth initial conditions, the HOC schemes attain clear fourth-order convergence but fail if non-smooth payoff conditions are used. To restore the fourth-order convergence, we use a grid stretching that concentrates grid nodes at the strike price for European options. For an American option, an efficient procedure is also described to compute the option price, Greeks and the optimal exercise curve. Comparisons with a fourth-order non-compact scheme are also done. However, fourth-order convergence is not experienced with this strategy. To improve the convergence rate for American options, we discuss the use of a front-fixing transformation with the HOC scheme. We also show that the HOC scheme with grid stretching along the asset price dimension gives accurate numerical solutions for European options under stochastic volatility.  相似文献   

18.
We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of Schöbel and Zhu (1999) by including stochastic interest rates. Moreover, we allow all driving model factors to be instantaneously correlated with each other, i.e. we allow for a general correlation structure between the instantaneous interest rates, the volatilities and the underlying stock returns. As insurance products often incorporate long-term exposures, they are typically more sensitive to changes in the interest rates, volatility and currencies. Therefore, having the flexibility to correlate the underlying asset price with both the stochastic volatility and the stochastic interest rates, yields a realistic model which is of practical importance for the pricing and hedging of such long-term contracts. We show that European options, typically used for the calibration of the model to market prices, and forward starting options can be priced efficiently and in closed-form by means of Fourier inversion techniques. We extensively discuss the numerical implementation of these pricing formulas, allowing for a fast and accurate valuation of European and forward starting options. The model will be especially useful for the pricing and risk management of insurance contracts and other exotic derivatives involving long-term maturities.  相似文献   

19.
李莉英  金朝嵩 《经济数学》2005,22(2):144-149
本文对美式看跌期权的定价提供了一种新的混合数值方法,即快速傅里叶变换法加龙格-库塔法.首先将美式看跌期权价格所满足的Black-Scholes微分方程定解问题转化为一个标准的抛物型初、边值问题,然后通过傅里叶变换,使之转换为一个不带股价变量的常微分方程初值问题,再利用龙格-库塔法对其进行数值求解.数值实验表明,本文算法是一种快速的高精度的算法.  相似文献   

20.
ABSTRACT

The classical linear Black–Scholes model for pricing derivative securities is a popular model in the financial industry. It relies on several restrictive assumptions such as completeness, and frictionless of the market as well as the assumption on the underlying asset price dynamics following a geometric Brownian motion. The main purpose of this paper is to generalize the classical Black–Scholes model for pricing derivative securities by taking into account feedback effects due to an influence of a large trader on the underlying asset price dynamics exhibiting random jumps. The assumption that an investor can trade large amounts of assets without affecting the underlying asset price itself is usually not satisfied, especially in illiquid markets. We generalize the Frey–Stremme nonlinear option pricing model for the case the underlying asset follows a Lévy stochastic process with jumps. We derive and analyze a fully nonlinear parabolic partial-integro differential equation for the price of the option contract. We propose a semi-implicit numerical discretization scheme and perform various numerical experiments showing the influence of a large trader and intensity of jumps on the option price.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号