首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The geometrical interpretation of a family of higher order iterative methods for solving nonlinear scalar equations was presented in [S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157(1) (2003) 197-205]. This family includes, as particular cases, some of the most famous third-order iterative methods: Chebyshev methods, Halley methods, super-Halley methods, C-methods and Newton-type two-step methods. The aim of the present paper is to analyze the convergence of this family for equations defined between two Banach spaces by using a technique developed in [J.A. Ezquerro, M.A. Hernández, Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57(3) (2007) 354-360]. This technique allows us to obtain a general semilocal convergence result for these methods, where the usual conditions on the second derivative are relaxed. On the other hand, the main practical difficulty related to the classical third-order iterative methods is the evaluation of bilinear operators, typically second-order Fréchet derivatives. However, in some cases, the second derivative is easy to evaluate. A clear example is provided by the approximation of Hammerstein equations, where it is diagonal by blocks. We finish the paper by applying our methods to some nonlinear integral equations of this type.  相似文献   

2.
Recently, Lee et al. [Young-ju Lee, Jinbiao Wu, Jinchao Xu, Ludmil Zikatanov, On the convergence of iterative methods for semidefinite linear systems, SIAM J. Matrix Anal. Appl. 28 (2006) 634-641] introduce new criteria for the semi-convergence of general iterative methods for semidefinite linear systems based on matrix splitting. The new conditions generalize the classical notion of P-regularity introduced by Keller [H.B. Keller, On the solution of singular and semidefinite linear systems by iterations, SIAM J. Numer. Anal. 2 (1965) 281-290]. In view of their results, we consider here stipulations on a splitting A=M-N, which lead to fixed point systems such that, the iterative scheme converges to a weighted Moore-Penrose solution to the system Ax=b. Our results extend the result of Lee et al. to a more general case and we also show that it requires less restrictions on the splittings than Keller’s P-regularity condition to ensure the convergence of iterative scheme.  相似文献   

3.
Necessary and sufficient conditions under which two- and three-point iterative methods have the order of convergence р (2 ≤ р ≤ 8) are formulated for the first time. These conditions can be effectively used to prove the convergence of iterative methods. In particular, the order of convergence of some known optimal methods is verified using the proposed sufficient convergence tests. The optimal set of parameters making it possible to increase the order of convergence is found. It is shown that the parameters of the known iterative methods with the optimal order of convergence have the same asymptotic behavior. The simplicity of choosing the parameters of the proposed methods is an advantage over the other known methods.  相似文献   

4.
Recently, by Costabile, Gualtieri and Serra (1999), an iterative method was presented for the computation of zeros of C 1 functions. This method combines the assured convergence of the bisection-like algorithms with a superlinear convergence speed which characterizes Newton-like methods. The order of the method and the cost per iteration is exactly equivalent to the Newton method. In this paper we present a new iterative method for the computation of the zeros of C 1 functions with the same properties of convergence as the method proposed by Costabile, Gualtieri and Serra (1999) but with order 1+ $\sqrt 2 $ ?2.41 for C 3 functions. Compared with the methods of order 1+ $\sqrt 2 $ presented by Traub (1964), our methods ensure global convergence. Then we consider a generalization of this procedure which gives a class of methods of order (n+ $\sqrt {n^2 + 4} $ )/2, where n is the degree of the approximating polynomial, with one-point iteration functions with memory. Finally a number of numerical tests are performed. The numerical results seem to show that, at least on a set of problems, the new methods work better than the methods proposed, and, therefore, than both the Newton and Alefeld and Potra (1992) methods.  相似文献   

5.
This paper is concerned with weighted least squares solutions to general coupled Sylvester matrix equations. Gradient based iterative algorithms are proposed to solve this problem. This type of iterative algorithm includes a wide class of iterative algorithms, and two special cases of them are studied in detail in this paper. Necessary and sufficient conditions guaranteeing the convergence of the proposed algorithms are presented. Sufficient conditions that are easy to compute are also given. The optimal step sizes such that the convergence rates of the algorithms, which are properly defined in this paper, are maximized and established. Several special cases of the weighted least squares problem, such as a least squares solution to the coupled Sylvester matrix equations problem, solutions to the general coupled Sylvester matrix equations problem, and a weighted least squares solution to the linear matrix equation problem are simultaneously solved. Several numerical examples are given to illustrate the effectiveness of the proposed algorithms.  相似文献   

6.
When we choose an iterative process for solving a nonlinear equation, the region of accessibility of the iterative process is certainly useful. We know that the higher the order of convergence of the iterative process, the smaller the region of accessibility. In this paper, we present a simple modification of the classic third-order iterative processes, so as to consider, for each of them, the same region of accessibility as that of the Newton method, that is to say a method of order of convergence two.  相似文献   

7.
Recently, new higher order finite volume methods (FVM) were introduced in [Z. Cai, J. Douglas, M. Park, Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Adv. Comput. Math. 19 (2003) 3-33], where the linear system derived by the hybridization with Lagrange multiplier satisfying the flux consistency condition is reduced to a linear system for a pressure variable by an appropriate quadrature rule. We study the convergence of an iterative solver for this linear system. The conjugate gradient (CG) method is a natural choice to solve the system, but it seems slow, possibly due to the non-diagonal dominance of the system. In this paper, we propose block iterative methods with a reordering scheme to solve the linear system derived by the higher order FVM and prove their convergence. With a proper ordering, each block subproblem can be solved by fast methods such as the multigrid (MG) method. The numerical experiments show that these block iterative methods are much faster than CG.  相似文献   

8.
In this paper, a general family of Steffensen-type methods with optimal order of convergence for solving nonlinear equations is constructed by using Newton’s iteration for the direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub [H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651] that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2m−1. Its error equations and asymptotic convergence constants are obtained. Finally, it is compared with the related methods for solving nonlinear equations in the numerical examples.  相似文献   

9.
Two families of derivative free two-point iterative methods for solving nonlinear equations are constructed. These methods use a suitable parametric function and an arbitrary real parameter. It is proved that the first family has the convergence order four requiring only three function evaluations per iteration. In this way it is demonstrated that the proposed family without memory supports the Kung-Traub hypothesis (1974) on the upper bound 2n of the order of multipoint methods based on n + 1 function evaluations. Further acceleration of the convergence rate is attained by varying a free parameter from step to step using information available from the previous step. This approach leads to a family of two-step self-accelerating methods with memory whose order of convergence is at least and even in special cases. The increase of convergence order is attained without any additional calculations so that the family of methods with memory possesses a very high computational efficiency. Numerical examples are included to demonstrate exceptional convergence speed of the proposed methods using only few function evaluations.  相似文献   

10.
In this article we present three derivative free iterative methods with memory to solve nonlinear equations. With the process developed, we can obtain n-step derivative free iterative methods with memory of arbitrary high order. Numerical examples are provided to show that the new methods have an equal or superior performance, on smooth and nonsmooth equations, compared to classical iterative methods as Steffensen’s and Newton’s methods and other derivative free methods with and without memory with high order of convergence.  相似文献   

11.
We develop a simple yet effective and applicable scheme for constructing derivative free optimal iterative methods, consisting of one parameter, for solving nonlinear equations. According to the, still unproved, Kung-Traub conjecture an optimal iterative method based on k+1 evaluations could achieve a maximum convergence order of $2^{k}$ . Through the scheme, we construct derivative free optimal iterative methods of orders two, four and eight which request evaluations of two, three and four functions, respectively. The scheme can be further applied to develop iterative methods of even higher orders. An optimal value of the free-parameter is obtained through optimization and this optimal value is applied adaptively to enhance the convergence order without increasing the functional evaluations. Computational results demonstrate that the developed methods are efficient and robust as compared with many well known methods.  相似文献   

12.
In this paper two families of zero-finding iterative methods for solving nonlinear equations f(x)=0 are presented. The key idea to derive them is to solve an initial value problem applying Obreshkov-like techniques. More explicitly, Obreshkov’s methods have been used to numerically solve an initial value problem that involves the inverse of the function f that defines the equation. Carrying out this procedure, several methods with different orders of local convergence have been obtained. An analysis of the efficiency of these methods is given. Finally we introduce the concept of extrapolated computational order of convergence with the aim of numerically test the given methods. A procedure for the implementation of an iterative method with an adaptive multi-precision arithmetic is also presented.  相似文献   

13.
Two one parameter families of iterative methods for the simultaneous determination of simple zeros of algebraic polynomials are presented. The construction of these families are based on a one parameter family of the third order for finding a single root of nonlinear equation f(x)=0. Some previously derived simultaneous methods can be obtained from the presented families as special cases. We prove that the local convergence of the proposed families is of the order four. Numerical results are included to demonstrate the convergence properties of considered methods.  相似文献   

14.
Using an interactive approach which combines symbolic computation and Taylor’s series, a wide family of three-point iterative methods for solving nonlinear equations is constructed. These methods use two suitable parametric functions at the second and third step and reach the eighth order of convergence consuming only four function evaluations per iteration. This means that the proposed family supports the Kung-Traub hypothesis (1974) on the upper bound 2m of the order of multipoint methods based on m + 1 function evaluations, providing very high computational efficiency. Different methods are obtained by taking specific parametric functions. The presented numerical examples demonstrate exceptional convergence speed with only few function evaluations.  相似文献   

15.
For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.  相似文献   

16.
A family of three-point iterative methods for solving nonlinear equations is constructed using a suitable parametric function and two arbitrary real parameters. It is proved that these methods have the convergence order eight requiring only four function evaluations per iteration. In this way it is demonstrated that the proposed class of methods supports the Kung-Traub hypothesis (1974) [3] on the upper bound 2n of the order of multipoint methods based on n+1 function evaluations. Consequently, this class of root solvers possesses very high computational efficiency. Numerical examples are included to demonstrate exceptional convergence speed with only few function evaluations.  相似文献   

17.
In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter mN∪{0}. These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton’s and Chebyshev’s methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.  相似文献   

18.
In this paper, we study the iterative process of the joint numerical assessment of levels of training students and difficulties in tasks of diagnostic tools using the dichotomous response matrix A of size N × M with allowance for the contribution of tasks of different difficulty to the assessments obtained. It is shown that not for any matrix A there exist infinite iterative sequences, and in the case of their existence, they do not always converge. A wide range of sufficient conditions for their convergence have been obtained, which are based on the following: (1) the matrix A contains at least three different columns; (2) if one places the columns of the matrix A in non-decreasing order of column sums, then for any position of the vertical dividing line between the columns there exists a row, which has at least one unity to the left of the line and at least one zero to the right of the line. It is established that the response matrix A obtained as a result of testing reliability satisfies these two conditions. The properties of such matrices have been studied. In particular, the equivalence of the above-mentioned conditions of primitiveness of the square matrix B of order M with the entries \({b_{ij}} = \sum\limits_{\ell = 1}^N {(1 - {a_{\ell i}}){a_{\ell i}}} \) has been proved. Using the matrix analysis, we have proved that the primitiveness of the matrix B ensures the convergence of iterative sequences, as well as independence of their limits of the choice of the initial approximation. We have estimated the rate of convergence of these sequences and found their limits.  相似文献   

19.
We study a class of at least third order iterative methods for nonlinear equations on Banach spaces. A characterization of the convergence under Gamma-type conditions is presented. Though, in general, these methods are not very extended due to their computational costs, we can find examples in which they are competitive and even cheaper than other simpler methods. Indeed, we propose a new nonlinear mathematical model for the denoising of digital images, where the best method in the family has fourth order of convergence. Moreover, our family includes two-step Newton type methods with good numerical behavior in general. We center our analysis in both, analytic and computational, aspects.  相似文献   

20.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号