首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-step 7-stage Hermite-Birkhoff-Taylor method of order 11, denoted by HBT(11)7, is constructed for solving nonstiff first-order initial value problems y=f(t,y), y(t0)=y0. The method adds the derivatives y to y(6), used in Taylor methods, to a 7-stage Runge-Kutta method of order 6. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution to order 11 leads to Taylor- and Runge-Kutta-type order conditions. These conditions are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. The new method has a larger scaled interval of absolute stability than the Dormand-Prince DP87 and a larger unscaled interval of absolute stability than the Taylor method, T11, of order 11. HBT(11)7 is superior to DP87 and T11 in solving several problems often used to test higher-order ODE solvers on the basis of the number of steps, CPU time, and maximum global error. Numerical results show the benefit of adding high-order derivatives to Runge-Kutta methods.  相似文献   

2.
In this paper we develop a fast collocation method for second boundary integral equations by the trigonometric polynomials. We propose a convenient way to compress the dense matrix representation of a compact integral operator with a smooth kernel under the Fourier basis and the corresponding collocation functionals. The compression leads to a sparse matrix with only O(nlog2n) number of nonzero entries, where 2n+1 denotes the order of the matrix. Thus we develop a fast Fourier-collocation method. We prove that the fast Fourier-collocation method gives the optimal convergence order up to a logarithmic factor. Moreover, we design a fast scheme for solving the corresponding truncated linear system. We establish that this algorithm preserves the quasi-optimal convergence of the approximate solution with requiring a number of O(nlog3n) multiplications.  相似文献   

3.
A fast solution algorithm is proposed for solving block banded block Toeplitz systems with non-banded Toeplitz blocks. The algorithm constructs the circulant transformation of a given Toeplitz system and then by means of the Sherman-Morrison-Woodbury formula transforms its inverse to an inverse of the original matrix. The block circulant matrix with Toeplitz blocks is converted to a block diagonal matrix with Toeplitz blocks, and the resulting Toeplitz systems are solved by means of a fast Toeplitz solver.The computational complexity in the case one uses fast Toeplitz solvers is equal to ξ(m,n,k)=O(mn3)+O(k3n3) flops, there are m block rows and m block columns in the matrix, n is the order of blocks, 2k+1 is the bandwidth. The validity of the approach is illustrated by numerical experiments.  相似文献   

4.
A new four-point implicit block multistep method is developed for solving systems of first-order ordinary differential equations with variable step size. The method computes the numerical solution at four equally spaced points simultaneously. The stability of the proposed method is investigated. The Gauss-Seidel approach is used for the implementation of the proposed method in the PE(CE)m mode. The method is presented in a simple form of Adams type and all coefficients are stored in the code in order to avoid the calculation of divided difference and integration coefficients. Numerical examples are given to illustrate the efficiency of the proposed method.  相似文献   

5.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

6.
We consider iid Brownian motions, Bj(t), where Bj(0) has a rapidly decreasing, smooth density function f. The empirical quantiles, or pointwise order statistics, are denoted by Bj:n(t), and we consider a sequence Qn(t)=Bj(n):n(t), where j(n)/nα∈(0,1). This sequence converges in probability to q(t), the α-quantile of the law of Bj(t). We first show convergence in law in C[0,) of Fn=n1/2(Qnq). We then investigate properties of the limit process F, including its local covariance structure, and Hölder-continuity and variations of its sample paths. In particular, we find that F has the same local properties as fBm with Hurst parameter H=1/4.  相似文献   

7.
An implicit version of the shifted QR eigenvalue algorithm given in Bini et al. [D.A. Bini, Y. Eidelman, I. Gohberg, L. Gemignani, SIAM J. Matrix Anal. Appl. 29(2) (2007) 566-585] is presented for computing the eigenvalues of an n×n companion matrix using O(n2) flops and O(n) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.  相似文献   

8.
In the present paper we present the tensor-product approximation of a multidimensional convolution transform discretized via a collocation-projection scheme on uniform or composite refined grids. Examples of convolving kernels are provided by the classical Newton, Slater (exponential) and Yukawa potentials, 1/‖x‖, and with xRd. For piecewise constant elements on the uniform grid of size nd, we prove quadratic convergence O(h2) in the mesh parameter h=1/n, and then justify the Richardson extrapolation method on a sequence of grids that improves the order of approximation up to O(h3). A fast algorithm of complexity O(dR1R2nlogn) is described for tensor-product convolution on uniform/composite grids of size nd, where R1,R2 are tensor ranks of convolving functions. We also present the tensor-product convolution scheme in the two-level Tucker canonical format and discuss the consequent rank reduction strategy. Finally, we give numerical illustrations confirming: (a) the approximation theory for convolution schemes of order O(h2) and O(h3); (b) linear-logarithmic scaling of 1D discrete convolution on composite grids; (c) linear-logarithmic scaling in n of our tensor-product convolution method on an n×n×n grid in the range n≤16384.  相似文献   

9.
This article investigates the projection-difference method for a Cauchy problem for a linear operator-differential equation with a leading self-adjoint operator A(t) and a subordinate linear operator K(t) in Hilbert space. This method leads to the solution of a system of linear algebraic equations on each time level; moreover, the projection subspaces are linear spans of eigenvectors of an operator similar to A(t). The convergence estimates are obtained. The application of the developed method for solving the initial boundary value problem is given.  相似文献   

10.
A one-step 5-stage Hermite-Birkhoff-Taylor method, HBT(12)5, of order 12 is constructed for solving nonstiff systems of differential equations y=f(t,y), y(t0)=y0, where yRn. The method uses derivatives y to y(9) as in Taylor methods combined with a 5-stage Runge-Kutta method. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution to order 12 leads to Taylor- and Runge-Kutta-type order conditions which are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. HBT(12)5 has a larger interval of absolute stability than Dormand-Prince DP(8, 7)13M and Taylor method T12 of order 12. The new method has also a smaller norm of principal error term than T12. It is superior to DP(8, 7)13M and T12 on the basis the number of steps, CPU time and maximum global error on common test problems. The formulae of HBT(12)5 are listed in an appendix.  相似文献   

11.
Given positive integers n,k,t, with 2?k?n, and t<2k, let m(n,k,t) be the minimum size of a family F of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains at least t members of F, and every (k-1)-subset of [n] contains at most t-1 members of F. For fixed k and t, we determine the order of magnitude of m(n,k,t). We also consider related Turán numbers T?r(n,k,t) and Tr(n,k,t), where T?r(n,k,t) (Tr(n,k,t)) denotes the minimum size of a family such that every k-subset of [n] contains at least t members of F. We prove that T?r(n,k,t)=(1+o(1))Tr(n,k,t) for fixed r,k,t with and n→∞.  相似文献   

12.
A numerical method based on B-spline is developed to solve the general nonlinear two-point boundary value problems up to order 6. The standard formulation of sextic spline for the solution of boundary value problems leads to non-optimal approximations. In order to derive higher orders of accuracy, high order perturbations of the problem are generated and applied to construct the numerical algorithm. The error analysis and convergence properties of the method are studied via Green’s function approach. O(h6) global error estimates are obtained for numerical solution of these classes of problems. Numerical results are given to illustrate the efficiency of the proposed method. Results of numerical experiments verify the theoretical behavior of the orders of convergence.  相似文献   

13.
For an undirected graph G=(V,E), the edge connectivity values between every pair of nodes of G can be succinctly recorded in a flow-equivalent tree that contains the edge connectivity value for a linear number of pairs of nodes. We generalize this result to show how we can efficiently recover a maximum set of disjoint paths between any pair of nodes of G by storing such sets for a linear number of pairs of nodes. At the heart of our result is an observation that combining two flow solutions of the same value, one between nodes s and r and the second between nodes r and t, into a feasible flow solution of value f between nodes s and t, is equivalent to solving a stable matching problem on a bipartite multigraph.Our observation, combined with an observation of Chazelle, leads to a data structure, which takes O(n3.5) time to generate, that can construct the maximum number λ(u,v) of edge-disjoint paths between any pair (u,v) of nodes in time O(α(n,n)λ(u,v)n) time.  相似文献   

14.
The aim of this paper is to develop high-order methods for solving time-fractional partial differential equations. The proposed high-order method is based on high-order finite element method for space and finite difference method for time. Optimal convergence rate O((Δt)2−α+Nr) is proved for the (r−1)th-order finite element method (r≥2).  相似文献   

15.
We approximate weighted integrals over Euclidean space by using shifted rank-1 lattice rules with good bounds on the “generalised weighted star discrepancy”. This version of the discrepancy corresponds to the classic L weighted star discrepancy via a mapping to the unit cube. The weights here are general weights rather than the product weights considered in earlier works on integrals over Rd. Known methods based on an averaging argument are used to show the existence of these lattice rules, while the component-by-component technique is used to construct the generating vector of these shifted lattice rules. We prove that the bound on the weighted star discrepancy considered here is of order O(n−1+δ) for any δ>0 and with the constant involved independent of the dimension. This convergence rate is better than the O(n−1/2) achieved so far for both Monte Carlo and quasi-Monte Carlo methods.  相似文献   

16.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

17.
A new effective decoding algorithm is presented for arbitrary algebraic-geometric codes on the basis of solving a generalized key equation with the majority coset scheme of Duursma. It is an improvement of Ehrhard's algorithm, since the method corrects up to half of the Goppa distance with complexity order O(n2.81), and with no further assumption on the degree of the divisor G.  相似文献   

18.
In this paper we introduce the concept of a weak solution for second order differential inclusions of the form u″(t) ∈ Au(t) + f(t), where A is a maximal monotone operator in a Hilbert space H. We prove existence and uniqueness of weak solutions to two point boundary value problems associated with such kind of equations. Furthermore, existence of (strong and weak) solutions to the equation above which are bounded on the positive half axis is proved under the optimal condition tf(t) ∈ L 1(0, ∞; H), thus solving a long-standing open problem (for details, see our comments in Section 3 of the paper). Our treatment regarding weak solutions is similar to the corresponding theory related to the first order differential inclusions of the form f(t) ∈ u′(t) + Au(t) which has already been well developed.  相似文献   

19.
The quadratic functional minimization with differential restrictions represented by the command linear systems is considered. The optimal solution determination implies the solving of a linear problem with two points boundary values. The proposed method implies the construction of a fundamental solution S(t)—a n×n matrix—and of a vector h(t) defining an adjoint variable λ(t) depending of the state variable x(t). From the extremum necessary conditions it is obtained the Riccati matrix differential equation having the S(t) as unknown fundamental solution is obtained. The paper analyzes the existence of the Riccati equation solution S(t) and establishes as the optimal solution of the proposed optimum problem. Also a superior limit of the minimum for the considered quadratic functionals class are evaluated.  相似文献   

20.
In this paper, we investigate the stability and convergence of some fully discrete finite element schemes for solving the acoustic wave equation where a discontinuous Galerkin discretization in space is used. We first review and compare conventional time-stepping methods for solving the acoustic wave equation. We identify their main properties and investigate their relationship. The study includes the Newmark algorithm which has been used extensively in applications. We present a rigorous stability analysis based on the energy method and derive sharp stability results covering some well-known CFL conditions. A convergence analysis is carried out and optimal a priori error estimates are obtained. For sufficiently smooth solutions, we demonstrate that the maximal error in the L 2-norm error over a finite time interval converges optimally as O(h p+1+??t s ), where p denotes the polynomial degree, s=1 or 2, h the mesh size, and ??t the time step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号