首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, based on Ostrowski’s method, a new family of eighth-order methods for solving nonlinear equations is derived. In terms of computational cost, each iteration of these methods requires three evaluations of the function and one evaluation of its first derivative, so that their efficiency indices are 1.682, which is optimal according to Kung and Traub’s conjecture. Numerical comparisons are made to show the performance of the new family.  相似文献   

2.
A family of eighth-order iterative methods with four evaluations for the solution of nonlinear equations is presented. Kung and Traub conjectured that an iteration method without memory based on n evaluations could achieve optimal convergence order 2n-1. The new family of eighth-order methods agrees with the conjecture of Kung-Traub for the case n=4. Therefore this family of methods has efficiency index equal to 1.682. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.  相似文献   

3.
In this paper, based on Newton’s method, we derive a modified Ostrowski’s method with an eighth-order convergence for solving the simple roots of nonlinear equations by Hermite interpolation methods. Per iteration this method requires three evaluations of the function and one evaluation of its first derivative, which implies that the efficiency index of the developed method is 1.682, which is optimal according to Kung and Traub’s conjecture Kung and Traub (1974) [2]. Numerical comparisons are made to show the performance of the derived method, as shown in the illustrative examples.  相似文献   

4.
In this paper, we derive a new family of eighth-order methods for solving simple roots of nonlinear equations by using weight function methods. Per iteration these methods require three evaluations of the function and one evaluation of its first derivative, which implies that the efficiency indexes are 1.682. Numerical comparisons are made to show the performance of the derived methods, as shown in the illustration examples.  相似文献   

5.
A family of eighth-order iterative methods for the solution of nonlinear equations is presented. The new family of eighth-order methods is based on King’s fourth-order methods and the family of sixth-order iteration methods developed by Chun et al. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative. Therefore this family of methods has the efficiency index which equals 1.682. Kung and Traub conjectured that a multipoint iteration without memory based on nn evaluations could achieve optimal convergence order 2n−12n1. Thus we provide a new example which agrees with the conjecture of Kung–Traub for n=4n=4. Numerical comparisons are made to show the performance of the presented methods.  相似文献   

6.
We establish new iterative methods of local order fourteen to approximate the simple roots of nonlinear equations. The considered three-step eighth-order construction can be viewed as a variant of Newton’s method in which the concept of Hermite interpolation is used at the third step to reduce the number of evaluations. This scheme includes three evaluations of the function and one evaluation of the first derivative per iteration, hence its efficiency index is 1.6817. Next, the obtained approximation for the derivative of the Newton’s iteration quotient is again taken into consideration to furnish novel fourteenth-order techniques consuming four function and one first derivative evaluations per iteration. In providing such new fourteenth-order methods, we also take a special heed to the computational burden. The contributed four-step methods have 1.6952 as their efficiency index. Finally, various numerical examples are given to illustrate the accuracy of the developed techniques.  相似文献   

7.
In this paper, we present two new iterative methods for solving nonlinear equations by using suitable Taylor and divided difference approximations. Both methods are obtained by modifying Potra-Pták’s method trying to get optimal order. We prove that the new methods reach orders of convergence four and eight with three and four functional evaluations, respectively. So, Kung and Traub’s conjecture Kung and Traub (1974) [2], that establishes for an iterative method based on n evaluations an optimal order p=2n−1 is fulfilled, getting the highest efficiency indices for orders p=4 and p=8, which are 1.587 and 1.682.We also perform different numerical tests that confirm the theoretical results and allow us to compare these methods with Potra-Pták’s method from which they have been derived, and with other recently published eighth-order methods.  相似文献   

8.
In this paper, we derive a new family of eighth-order methods for obtaining simple roots of nonlinear equations by using the weight function method. Each iteration of these methods requires three evaluations of the function and one evaluation of its first derivative, so that their efficiency indices are 1.682, which are optimal according to the Kung and Traub’s conjecture (1974) [2]. Numerical comparisons are made to show the performance of the derived method, as is shown in the numerical section.  相似文献   

9.
In this paper, we present an improvement of the local order of convergence to increase the efficiency of some fourth-order iterative methods and the order can be improved from four to eight. Per iteration the present methods require three evaluations of the function and one evaluation of its first derivative and therefore have the efficiency index equal to 1.682. Numerical tests verifying the theory are given.  相似文献   

10.
In this paper, we present some new variants of Ostrowski’s method with order of convergence eight. For each iteration the new methods require three evaluations of the function and one evaluation of its first derivative and therefore they have the efficiency index equal to 1.682. Numerical tests verifying the theory are also given.  相似文献   

11.
In this work, we present a family of iterative methods for solving nonlinear equations. It is proved that these methods have convergence order 8. These methods require three evaluations of the function, and only use one evaluation of the first derivative per iteration. The efficiency of the method is tested on a number of numerical examples. On comparison with the eighth-order methods, the iterative methods in the new family behave either similarly or better for the test examples.  相似文献   

12.
In this paper, we developed two new families of sixth-order methods for solving simple roots of non-linear equations. Per iteration these methods require two evaluations of the function and two evaluations of the first-order derivatives, which implies that the efficiency indexes of our methods are 1.565. These methods have more advantages than Newton’s method and other methods with the same convergence order, as shown in the illustration examples. Finally, using the developing methodology described in this paper, two new families of improvements of Jarratt method with sixth-order convergence are derived in a straightforward manner. Notice that Kou’s method in [Jisheng Kou, Yitian Li, An improvement of the Jarratt method, Appl. Math. Comput. 189 (2007) 1816-1821] and Wang’s method in [Xiuhua Wang, Jisheng Kou, Yitian Li, A variant of Jarratt method with sixth-order convergence, Appl. Math. Comput. 204 (2008) 14-19] are the special cases of the new improvements.  相似文献   

13.
A new eighth-order iterative method for solving nonlinear equations   总被引:1,自引:0,他引:1  
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method.  相似文献   

14.
Based on Ostrowski’s fourth order method, we derive a family of eighth order methods for the solution of nonlinear equations. In terms of computational cost the family requires three evaluations of the function and one evaluation of first derivative. Therefore, the efficiency index of the present methods is 1.682 which is better than the efficiency index 1.587 of Ostrowski’s method. Kung and Traub conjectured that multipoint iteration methods without memory based on n evaluations have optimal order 2 n − 1. Thus, the family agrees with Kung–Traub conjecture for the case n = 4. The efficacy of the present methods is tested on a number of numerical examples. It is observed that our methods are competitive with other similar robust methods and very effective in high precision computations.  相似文献   

15.
In this paper some families of zero-finding iterative methods for nonlinear equations are presented. The key idea to derive them is to solve an initial value problem applying Runge-Kutta techniques. More explicitly, these methods are used to solve the problem that consists in a differential equation in what appears the inverse function of the one which zero will be computed and the condition given by the value attained by it at the initial approximation. Carrying out this procedure several families of different orders of local convergence are obtained. Furthermore, the efficiency of these families are computed and two new families using like-Newton’s methods that improve the most efficient one are also given.  相似文献   

16.
In this paper, some sixth-order modifications of Jarratt method for solving single variable nonlinear equations are proposed. Per iteration, they consist of two function and two first derivative evaluations. The convergence analyses of the presented iterative methods are provided theoretically and a comparison with other existing famous iterative methods of different orders is given. Numerical examples include some of the newest and the most efficient optimal eighth-order schemes, such as Petkovic (SIAM J Numer Anal 47:4402–4414, 2010), to put on show the accuracy of the novel methods. Finally, it is also observed that the convergence radii of our schemes are better than the convergence radii of the optimal eighth-order methods.  相似文献   

17.
Using an interactive approach which combines symbolic computation and Taylor’s series, a wide family of three-point iterative methods for solving nonlinear equations is constructed. These methods use two suitable parametric functions at the second and third step and reach the eighth order of convergence consuming only four function evaluations per iteration. This means that the proposed family supports the Kung-Traub hypothesis (1974) on the upper bound 2m of the order of multipoint methods based on m + 1 function evaluations, providing very high computational efficiency. Different methods are obtained by taking specific parametric functions. The presented numerical examples demonstrate exceptional convergence speed with only few function evaluations.  相似文献   

18.
In this paper, we present a class of new variants of Ostrowski's method with order of convergence seven. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative and therefore this class of methods has the efficiency index equal to 1.627. Numerical tests verifying the theory are given, and multistep iterations, based on the present methods, are developed.  相似文献   

19.
In this paper, we first establish a new class of three-point methods based on the two-point optimal method of Ostrowski. Analysis of convergence shows that any method of our class arrives at eighth order of convergence by using three evaluations of the function and one evaluation of the first derivative per iteration. Thus, this order agrees with the conjecture of Kung and Traub (J. ACM 643–651, 1974) for constructing multipoint optimal iterations without memory. We second present another optimal eighth-order class based on the King’s fourth-order family and the first attained class. To support the underlying theory developed in this work, we examine some methods of the proposed classes by comparison with some of the existing optimal eighth-order methods in literature. Numerical experience suggests that the new classes would be valuable alternatives for solving nonlinear equations.  相似文献   

20.
Schröder’s methods of the first and second kind for solving a nonlinear equation f(x)=0, originally derived in 1870, are of great importance in the theory and practice of iteration processes. They were rediscovered several times and expressed in different forms during the last 130 years. It was proved in the paper of Petkovi? and Herceg (1999) [7] that even seven families of iteration methods for solving nonlinear equations are mutually equivalent. In this paper we show that these families are also equivalent to another four families of iteration methods and find that all of them have the origin in Schröder’s generalized method (of the second kind) presented in 1870. In the continuation we consider Smale’s open problem from 1994 about possible link between Schröder’s methods of the first and second kind and state the link in a simple way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号