首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, our aim is to study a numerical method for an ultraparabolic equation with nonlinear source function. Mathematically, the bibliography on initial–boundary value problems for ultraparabolic equations is not extensive although the problems have many applications related to option pricing, multi-parameter Brownian motion, population dynamics and so forth. In this work, we present the approximate solution by virtue of finite difference scheme and Fourier series. For the nonlinear case, we use an iterative scheme by linear approximation to get the approximate solution and obtain error estimates. A numerical example is given to justify the theoretical analysis.  相似文献   

2.
A fully implicit finite difference (FIFD) scheme with second-order space–time accuracy is studied for a nonlinear diffusion equation with general capacity term. A new reasoning procedure is introduced to overcome difficulties caused by the nonlinearity of the capacity term and the diffusion operator in the theoretical analysis. The existence of the FIFD solution is investigated at first which plays an important role in the analysis. It is established by choosing a new test function to bound the solution and its temporal and spatial difference quotients in suitable norms in the fixed point arguments, which is different from the traditional way. Based on these bounds, other fundamental properties of the scheme are rigorously analyzed consequently. It shows that the scheme is uniquely solvable, unconditionally stable, and convergent with second-order space–time accuracy in L(L2) and L(H1) norms. The theoretical analysis adapts to both one- and multidimensional problems, and can be extended to schemes with first-order time accuracy. Numerical tests are provided to verify the theoretical results and highlight the high accuracy of the second-order space–time accurate scheme. The reasoning techniques can be extended to a broad family of discrete schemes for nonlinear problems with capacity terms.  相似文献   

3.
The aim of this article is to present several computational algorithms for numerical solutions of a nonlinear finite difference system that represents a finite difference approximation of a class of fourth‐order elliptic boundary value problems. The numerical algorithms are based on the method of upper and lower solutions and its associated monotone iterations. Three linear monotone iterative schemes are given, and each iterative scheme yields two sequences, which converge monotonically from above and below, respectively, to a maximal solution and a minimal solution of the finite difference system. This monotone convergence property leads to upper and lower bounds of the solution in each iteration as well as an existence‐comparison theorem for the finite difference system. Sufficient conditions for the uniqueness of the solution and some techniques for the construction of upper and lower solutions are obtained, and numerical results for a two‐point boundary‐value problem with known analytical solution are given. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:347–368, 2001  相似文献   

4.
This article is concerned with numerical solutions of finite difference systems of reaction diffusion equations with nonlinear internal and boundary reaction functions. The nonlinear reaction functions are of general form and the finite difference systems are for both time-dependent and steady-state problems. For each problem a unified system of nonlinear equations is treated by the method of upper and lower solutions and its associated monotone iterations. This method leads to a monotone iterative scheme for the computation of numerical solutions as well as an existence-comparison theorem for the corresponding finite difference system. Special attention is given to the dynamical property of the time-dependent solution in relation to the steady-state solutions. Application is given to a heat-conduction problem where a nonlinear radiation boundary condition obeying the Boltzmann law of cooling is considered. This application demonstrates a bifurcation property of two steady-state solutions, and determines the dynamic behavior of the time-dependent solution. Numerical results for the heat-conduction problem, including a test problem with known analytical solution, are presented to illustrate the various theoretical conclusions. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A finite difference scheme for the two-dimensional, second-order, nonlinear elliptic equation is developed. The difference scheme is derived using the local solution of the differential equation. A 13-point stencil on a uniform mesh of size h is used to derive the finite difference scheme, which has a truncation error of order h4. Well-known iterative methods can be employed to solve the resulting system of equations. Numerical results are presented to demonstrate the fourth-order convergence of the scheme. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Summary. Two block monotone iterative schemes for a nonlinear algebraic system, which is a finite difference approximation of a nonlinear elliptic boundary-value problem, are presented and are shown to converge monotonically either from above or from below to a solution of the system. This monotone convergence result yields a computational algorithm for numerical solutions as well as an existence-comparison theorem of the system, including a sufficient condition for the uniqueness of the solution. An advantage of the block iterative schemes is that the Thomas algorithm can be used to compute numerical solutions of the sequence of iterations in the same fashion as for one-dimensional problems. The block iterative schemes are compared with the point monotone iterative schemes of Picard, Jacobi and Gauss-Seidel, and various theoretical comparison results among these monotone iterative schemes are given. These comparison results demonstrate that the sequence of iterations from the block iterative schemes converges faster than the corresponding sequence given by the point iterative schemes. Application of the iterative schemes is given to a logistic model problem in ecology and numerical ressults for a test problem with known analytical solution are given. Received August 1, 1993 / Revised version received November 7, 1994  相似文献   

7.
A simple technique is given in this paper for the construction and analysis of monotone iterative methods for a class of nonlinear partial differential equations. With the help of the special nonlinear property we can construct nonstationary parameters which can speed up the iterative process in solving the nonlinear system. Picard, Gauss–Seidel, and Jacobi monotone iterative methods are presented and analyzed for the adaptive solutions. The adaptive meshes are generated by the 1-irregular mesh refinement scheme which together with the M-matrix of the finite element stiffness matrix lead to existence–uniqueness–comparison theorems with simple upper and lower solutions as initial iterates. Some numerical examples, including a test problem with known analytical solution, are presented to demonstrate the accuracy and efficiency of the adaptive and monotone properties. Numerical results of simulations on a MOSFET with the gate length down to 34 nm are also given.  相似文献   

8.
A nonlinear finite difference scheme with high accuracy is studied for a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. Rigorous theoretical analysis is made for the stability and convergence properties of the scheme, which shows it is unconditionally stable and convergent with second order rate for both spatial and temporal variables. In the argument of theoretical results, difficulties arising from the nonlinearity and coupling between parabolic and hyperbolic equations are overcome, by an ingenious use of the method of energy estimation and inductive hypothesis reasoning. The reasoning method here differs from those used for linear implicit schemes, and can be widely applied to the studies of stability and convergence for a variety of nonlinear schemes for nonlinear PDE problems. Numerical tests verify the results of the theoretical analysis. Particularly it is shown that the scheme is more accurate and faster than a previous two-level nonlinear scheme with first order temporal accuracy.  相似文献   

9.
A nonlinear iteration method named the Picard-Newton iteration is studied for a two-dimensional nonlinear coupled parabolic-hyperbolic system. It serves as an efficient method to solve a nonlinear discrete scheme with second spatial and temporal accuracy. The nonlinear iteration scheme is constructed with a linearization-discretization approach through discretizing the linearized systems of the original nonlinear partial differential equations. It can be viewed as an improved Picard iteration, and can accelerate convergence over the standard Picard iteration. Moreover, the discretization with second-order accuracy in both spatial and temporal variants is introduced to get the Picard-Newton iteration scheme. By using the energy estimate and inductive hypothesis reasoning, the difficulties arising from the nonlinearity and the coupling of different equation types are overcome. It follows that the rigorous theoretical analysis on the approximation of the solution of the Picard-Newton iteration scheme to the solution of the original continuous problem is obtained, which is different from the traditional error estimate that usually estimates the error between the solution of the nonlinear discrete scheme and the solution of the original problem. Moreover, such approximation is independent of the iteration number. Numerical experiments verify the theoretical result, and show that the Picard-Newton iteration scheme with second-order spatial and temporal accuracy is more accurate and efficient than that of first-order temporal accuracy.  相似文献   

10.
Many applications in applied mathematics and engineering involve numerical solutions of partial differential equations (PDEs). Various discretisation procedures such as the finite difference method result in a problem of solving large, sparse systems of linear equations. In this paper, a group iterative numerical scheme based on the rotated (skewed) five-point finite difference discretisation is proposed for the solution of a fourth order elliptic PDE which represents physical situations in fluid mechanics and elasticity. The rotated approximation formulas lead to schemes with lower computational complexities compared to the centred approximation formulas since the iterative procedure need only involve nodes on half of the total grid points in the solution domain. We describe the development of the parallel group iterative scheme on a cluster of distributed memory parallel computer using Message-Passing Interface (MPI) programming environment. A comparative study with another group iterative scheme derived from the centred difference formula is also presented. A detailed performance analysis of the parallel implementations of both group methods will be reported and discussed.  相似文献   

11.
We consider a coupled system describing nonlinear Darcy flows with temperature dependent viscosity and with viscous heating. We first establish existence, uniqueness, and regularity of the weak solution of the system of equations. Next, we decouple the coupled system by a fixed point algorithm and propose its finite element approximation. Finally, we present convergence analysis with an error estimate between continuous solution and its iterative finite element approximation.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

12.
Finite difference approximation of the nonlinear integro-differential system associated with the penetration of a magnetic field into a substance is studied. The convergence of the finite difference scheme is proved. The rate of convergence of the discrete scheme is given. The decay of the numerical solution is compared with the analytical results proven earlier.  相似文献   

13.
In this paper we describe the Rothe-finite element numerical scheme to find an approximate solution of a nonlinear diffusion problem modeled as a parabolic partial differential equation of even order. This scheme is based on the Rothe’s approximation in time and on the finite element method (FEM) approximation in the spatial discretization. A proof of convergence of the approximate solution is given and error estimates are shown.  相似文献   

14.
This paper deals with the construction of a nonstandard numerical method to compute the travelling wave solutions of nonlinear reaction diffusion equations at high wave speeds. Related general properties are studied using the perturbation approximation. At high wave speed the perturbation parameter approaches to zero and the problem exhibits a multiscale character. That is, there are thin layers where the solution varies rapidly, while away from these layers the solution behaves regularly and varies slowly. Most of the conventional methods fail to capture this layer behavior. Thus, the quest for some new numerical techniques that may handle the travelling wave solutions at high wave speeds earns relevance. In this paper, one such parameter robust nonstandard numerical scheme is constructed, in the sense that its numerical solution converges in the maximum norm to the exact solution uniformly well for all finite wave speeds. To overcome the difficulty due to the nonlinearity, the problem is linearized using the quasilinearization process followed by nonstandard finite difference discretization. An extensive amount of analysis is carried out which uses a suitable decomposition of the error into smooth and singular component and a comparison principle combined with appropriate barrier functions. The error estimates are obtained, which ensures uniform convergence of the method. A set of numerical experiment is carried out in support of the predicted theory that validates computationally the theoretical results. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

15.
In this paper we consider the "fully nonlinear" size structured population model. We develop an implicit finite difference scheme to approximate the solution of this nonlinear partial differential equation. The convergence of this approximation to a unique bounded variation solution of this model is obtained. Numerical results to an example problem are presented.  相似文献   

16.
Summary. We consider a fully practical finite element approximation of the fourth order nonlinear degenerate parabolic equation where generically for any given . An iterative scheme for solving the resulting nonlinear discrete system is analysed. In addition to showing well-posedness of our approximation, we prove convergence in one space dimension. Finally some numerical experiments are presented. Received July 29, 1997  相似文献   

17.
A novel three level linearized difference scheme is proposed for the semilinear parabolic equation with nonlinear absorbing boundary conditions. The solution of this problem will blow up in finite time. Hence this difference scheme is coupled with an adaptive time step size, i.e., when the solution tends to infinity, the time step size will be smaller and smaller. Furthermore, the solvability, stability and convergence of the difference scheme are proved by the energy method. Numerical experiments are also given to demonstrate the theoretical second order convergence both in time and in space in L-norm.  相似文献   

18.
In this paper, a finite difference scheme is proposed for solving the nonlinear time-fractional integro-differential equation. This model involves two nonlocal terms in time, ie, a Caputo time-fractional derivative and an integral term with memory. The existence of numerical solutions is shown by the Leray-Schauder theorem. And we obtain the discrete L2 stability and convergence with second order in time and space by the discrete energy method. Then the uniqueness of numerical solutions is derived. Moreover, an iterative algorithm is designed for solving the derived nonlinear system. Numerical examples are presented to validate the theoretical findings and the efficiency of the proposed algorithm.  相似文献   

19.
崔霞  岳晶岩 《计算数学》2015,37(3):227-246
对于守恒型扩散方程,研究其二阶时间精度非线性全隐有限差分离散格式的性质,证明了其解的存在唯一性.研究了二阶时间精度的Picard-Newton迭代格式,证明了迭代解对原问题真解的二阶时间和空间收敛性,以及对非线性离散解的二次收敛速度,实现了非线性问题的快速求解.本文中方法也适用于一阶时间精度格式的分析,并可推广至对流扩散问题.数值实验验证了二阶时间精度Picard-Newton迭代格式的高精度和高效率.  相似文献   

20.
In this paper we propose a numerical scheme based on finite differences for the numerical solution of nonlinear multi-point boundary-value problems over adjacent domains. In each subdomain the solution is governed by a different equation. The solutions are required to be smooth across the interface nodes. The approach is based on using finite difference approximation of the derivatives at the interface nodes. Smoothness across the interface nodes is imposed to produce an algebraic system of nonlinear equations. A modified multi-dimensional Newton’s method is proposed for solving the nonlinear system. The accuracy of the proposed scheme is validated by examples whose exact solutions are known. The proposed scheme is applied to solve for the velocity profile of fluid flow through multilayer porous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号