首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new well-balanced unstaggered central finite volume scheme for hyperbolic balance laws with geometrical source terms. In particular we construct a new one and two-dimensional finite volume method for the numerical solution of shallow water equations on flat/variable bottom topographies. The proposed scheme evolves a non-oscillatory numerical solution on a single grid, avoids the time consuming process of solving Riemann problems arising at the cell interfaces, and is second-order accurate both in space and time. Furthermore, the numerical scheme follows a well-balanced discretization that first discretizes the geometrical source term according to the discretization of the flux terms, and then mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The resulting scheme exactly satisfies the C-property at the discrete level. The proposed scheme is then applied and classical one and two-dimensional shallow water equation problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

2.
In this work we propose and apply a numerical method based on finite volume relaxation approximation for computing the bed-load sediment transport in shallow water flows, in one and two space dimensions. The water flow is modeled by the well-known nonlinear shallow water equations which are coupled with a bed updating equation. Using a relaxation approximation, the nonlinear set of equations (and for two different formulations) is transformed to a semilinear diagonalizable problem with linear characteristic variables. A second order MUSCL-TVD method is used for the advection stage while an implicit–explicit Runge–Kutta scheme solves the relaxation stage. The main advantages of this approach are that neither Riemann problem solvers nor nonlinear iterations are required during the solution process. For the two different formulations, the applicability and effectiveness of the presented scheme is verified by comparing numerical results obtained for several benchmark test problems.  相似文献   

3.
A flux-limiter method for dam-break flows over erodible sediment beds   总被引:3,自引:0,他引:3  
Finite volume methods for dam-break flows over erodible sediment beds require a monotone numerical flux. In the present study we present a new flux-limiter scheme based on the Lax–Wendroff method coupled with a non-homogeneous Riemann solver and a flux limiter function. The non-homogeneous Riemann solver consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The proposed method satisfy the conservation property such that the discretization of the flux gradients and the source terms are well-balanced in the numerical solution of suspended sediment models. The flux-limiter method provides accurate results avoiding numerical oscillations and numerical dissipation in the approximated solutions. Several standard test examples are considered to verify the performance and the accuracy of the proposed method.  相似文献   

4.
We propose a new well-balanced central finite volume scheme for the Ripa system both in one and two space dimensions. The Ripa system is a nonhomogeneous hyperbolic system with a non-zero source term that is obtained from the shallow water equations system by incorporating horizontal temperature gradients. The proposed numerical scheme is a second-order accurate finite volume method that evolves a non-oscillatory numerical solution on a single grid, avoids the process of solving Riemann problems arising at the cell interfaces, and follows a well-balanced discretization that ensures the steady state requirement by discretizing the geometrical source term according to the discretization of the flux terms. Furthermore the proposed scheme mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The proposed scheme is then applied and classical one and two-dimensional Ripa problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

5.
Regularized equations describing hydrodynamic flows in the two-layer shallow water approximation are constructed. A conditionally stable finite-difference scheme based on the finitevolume method is proposed for the numerical solution of these equations. The scheme is tested using several well-known one-dimensional benchmark problems, including Riemann problems.  相似文献   

6.
A class of central unstaggered finite volume methods for approximating solutions of hyperbolic systems of conservation laws is developed in this paper. The proposed method is an extension of the central, non-oscillatory, finite volume method of Nessyahu and Tadmor (NT). In contrast with the original NT scheme, the method we develop evolves the numerical solution on a single grid; however ghost cells are implicitly used to avoid the resolution of the Riemann problems arising at the cell interfaces. We apply our method and solve classical one and two-dimensional unsteady shallow water problems. Our numerical results compare very well with those obtained using the original NT method, and are in good agreement with corresponding results appearing in the recent literature, thus confirming the efficiency and the potential of the proposed method.  相似文献   

7.
This paper is devoted to solve the system of partial differential equations governing the flow of two superposed immiscible layers of shallow water flows. The system contains source terms due to bottom topography, wind stresses, and nonconservative products describing momentum exchange between the layers. The presence of these terms in the flow model forms a nonconservative system which is only conditionally hyperbolic. In addition, two-layer shallow water flows are often accompanied with moving discontinuities and shocks. Developing stable numerical methods for this class of problems presents a challenge in the field of computational hydraulics. To overcome these difficulties, a new composite scheme is proposed. The scheme consists of a time-splitting operator where in the first step the homogeneous system of the governing equations is solved using an approximate Riemann solver. In the second step a finite volume method is used to update the solution. To remove the non-physical oscillations in the vicinity of shocks a nonlinear filter is applied. The method is well-balanced, non-oscillatory and it is suitable for both low and high values of the density ratio between the two layers. Several standard test examples for two-layer shallow water flows are used to verify high accuracy and good resolution properties for smooth and discontinuous solutions.  相似文献   

8.
《Applied Numerical Mathematics》2006,56(10-11):1464-1479
Numerical methods for conservation laws constructed in the framework of finite volume and discontinuous Galerkin finite elements require, as the building block, a monotone numerical flux. In this paper we present some preliminary results on the MUSTA approach [E.F. Toro, Multi-stage predictor–corrector fluxes for hyperbolic equations, Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003] for constructing upwind numerical fluxes. The scheme may be interpreted as an un-conventional approximate Riemann solver that has simplicity and generality as its main features. When used in its first-order mode we observe that the scheme achieves the accuracy of the Godunov method used in conjunction with the exact Riemann solver, which is the reference first-order method for hyperbolic systems. At least for the scalar model hyperbolic equation, the Godunov scheme is the best of all first-order monote schemes, it has the smallest truncation error. Extensions of the scheme of this paper are realized in the framework of existing approaches. Here we present a second-order TVD (TVD for the scalar case) extension and show numerical results for the two-dimensional Euler equations on non-Cartesian geometries. The schemes find their best justification when solving very complex systems for which the solution of the Riemann problem, in the classical sense, is too complex, too costly or is simply unavailable.  相似文献   

9.
The two-dimensional modelling of shallow water flows over multi-sediment erodible beds is presented. A novel approach is developed for the treatment of multiple sediment types in morphodynamics. The governing equations include the two-dimensional shallow water equations for hydrodynamics, an Exner-type equation for morphodynamics, a two-dimensional transport equation for the suspended sediments, and a set of empirical equations for entrainment and deposition. Multilayer sedimentary beds are formed of different erodible soils with sediment properties and new exchange conditions between the bed layers are developed for the model. The coupled equations yield a hyperbolic system of balance laws with source terms. As a numerical solver for the system, we implement a fast finite volume characteristics method. The numerical fluxes are reconstructed using the method of characteristics which employs projection techniques. The proposed finite volume solver is simple to implement, satisfies the conservation property and can be used for two-dimensional sediment transport problems in non-homogeneous isotropic beds without need of complicated three-dimensional equations. To assess the performance of the proposed models, we present numerical results for a wide variety of shallow water flows over sedimentary layers. Comparisons to experimental data for dam-break problems over movable beds are also included in this study.  相似文献   

10.
A well-balanced Godunov-type finite volume algorithm is developed for modelling free-surface shallow flows over irregular topography with complex geometry. The algorithm is based on a new formulation of the classical shallow water equations in hyperbolic conservation form. Unstructured triangular grids are used to achieve the adaptability of the grid to the geometry of the problem and to facilitate localised refinement. The numerical fluxes are calculated using HLLC approximate Riemann solver, and the MUSCL-Hancock predictor–corrector scheme is adopted to achieve the second-order accuracy both in space and in time where the solutions are continuous, and to achieve high-resolution results where the solutions are discontinuous. The novelties of the algorithm include preserving well-balanced property without any additional correction terms and the wet/dry front treatments. The good performance of the algorithm is demonstrated by comparing numerical and theoretical results of several benchmark problems, including the preservation of still water over a two-dimensional hump, the idealised dam-break flow over a frictionless flat rectangular channel, the circular dam-break, and the shock wave from oblique wall. Besides, two laboratory dam-break cases are used for model validation. Furthermore, a practical application related to dam-break flood wave propagation over highly irregular topography with complex geometry is presented. The results show that the algorithm can correctly account for free-surface shallow flows with respect to its effectiveness and robustness thus has bright application prospects.  相似文献   

11.
In this paper, we consider solving second-order elliptic problems with rapidly oscillating coefficients. Under the assumption that the oscillating coefficients are periodic, on the basis of classical homogenization theory, we present a finite element method whose key is to combine a numerical approximation of the 1-order approximate solution of those equations and a numerical approximation of the classical boundary corrector of those equations from different meshes exploiting the need for different levels of resolution. Numerical experiments are included to illustrate the competitive behavior of the proposed finite element method.  相似文献   

12.
We generalize the splitting algorithms proposed earlier for the construction of efficient difference schemes to the finite volume method. For numerical solution of the Euler and Navier–Stokes equations written in integral form, some implicit finite-volume predictor-corrector scheme of the second order of approximation is proposed. At the predictor stage, the introduction of various forms of splitting is considered, which makes it possible to reduce the solution of the original system to separate solution of individual equations at fractional steps and to ensure some stability margin of the algorithm as a whole. The algorithm of splitting with respect to physical processes and spatial directions is numerically tested. The properties of the algorithm are under study and we proved its effectiveness for solving two-dimensional and three-dimensional flow-around problems.  相似文献   

13.
A numerical method based on a second-order accurate Godunov-type scheme is described for solving the shallow water equations on unstructured triangular-quadrilateral meshes. The bottom surface is represented by a piecewise linear approximation with discontinuities, and a new approximate Riemann solver is used to treat the bottom jump. Flows with a dry sloping bottom are computed using a simplified method that admits negative depths and preserves the liquid mass and the equilibrium state. The accuracy and performance of the approach proposed for shallow water flow simulation are illustrated by computing one- and two-dimensional problems.  相似文献   

14.
In this study, we present a novel numerical model for simulating detonation waves on unstructured grids. In contrast to the conventional finite volume method (FVM), two types of moment comprising the volume-integrated average (VIA) and the point value (PV) at the cell vertex are treated as the evolution variables for the reacting Euler equations. The VIA is computed based on a finite volume formulation of the flux form where the conventional Riemann problem is solved by the HLLC Riemann solver. The PV is updated in a point-wise manner by using the differential formulation where the Roe solver is used to compute the differential Riemann problems. In order to increase the accuracy around discontinuities, numerical oscillations and dissipations are reduced using the boundary variation diminishing algorithm. Convergence tests demonstrated that the proposed model could achieve third-order accuracy with unstructured grids for reacting Euler equations. The high resolution property of the proposed method was verified based on simulations of several detonation wave propagation problems in two and three dimensions. In particular, the current model could resolve the cellular structures with fewer degrees of freedom for the unstable oblique detonation wave problem. These fine structures may be smoothed out by the conventional FVM due to the excessive amount of numerical dissipation errors. Importantly, a simulation of stiff detonation waves showed that the proposed method could capture the correct position of the reaction front whereas the conventional FVMs produced spurious phenomena. Thus, the proposed model can obtain highly accurate solutions for detonation problems on unstructured grids, which is highly advantageous for real applications involving complex geometrical configurations.  相似文献   

15.
In this paper, we consider the Riemann problem and interaction of elementary waves for a nonlinear hyperbolic system of conservation laws that arises in shallow water theory. This class of equations includes as a special case the equations of classical shallow water equations. We study the bore and dilatation waves and their properties, and show the existence and uniqueness of the solution to the Riemann problem. Towards the end, we discuss numerical results for different initial data along with all possible interactions of elementary waves. It is noticed that in contrast to the p -system, the Riemann problem is solvable for arbitrary initial data, and its solution does not contain vacuum state.  相似文献   

16.
The finite volume scheme of Vijayasundaram and Osher-Solomon type for shallow water equations are proposed. The numerical results with discontinuous initial condition and the comparison with Lax-Friedrichs numerical flux are presented for homogeneous case. The extension of the method for the inhomogeneous case is described.  相似文献   

17.
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. This paper considers numerical solution for hybrid fuzzy differential equations. The improved predictor–corrector method is adapted and modified for solving the hybrid fuzzy differential equations. The proposed algorithm is illustrated by numerical examples and the results obtained using the scheme presented here agree well with the analytical solutions. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated calculations of algorithm.  相似文献   

18.
In this study, a two-dimensional cell-centred finite volume scheme is used to simulate discontinuity in shallow water flows. Instead of using a Riemann solver, an artificial viscosity technique is developed to minimise unphysical oscillations. This is constructed from a combination of a Laplacian and a biharmonic operator using a maximum eigenvalue of the Jacobian matrix. In order to achieve high-order accuracy in time, we use the fourth-order Runge–Kutta method. A hybrid formulation is then proposed to reduce computational time, in which the artificial viscosity technique is only performed once per time step. The convective flux of the shallow water equations is still re-evaluated four times, but only by averaging left and right states, thus making the computation much cheaper. A comparison of analytical and laboratory results shows that this method is highly accurate for dealing with discontinuous flows. As such, this artificial viscosity technique could become a promising method for solving the shallow water equations.  相似文献   

19.
A fractional steps technique for the numerical solution of the shallow water equations is applied to study the water velocity in Lake Mariut, its concentration and the distribution of the temperature along it. Lake Mariut is considering the most productive natural systems in Egypt. The current configuration of this lake is changing rapidly, due to people’s activities and natural processes. Most of its water supply comes from polluted agricultural drains. Several problems affect the conservation of the Lake Mariut, mainly pollution, land reclamation, intensive aquatic vegetation, over fishing and coastal erosion. The shallow water equations for this lake are discretized on a fixed grid and time stepped with the fractional steps method, where the Riemann invariants of the equations are interpolated at each time step along the characteristics of the equations using a cubic spline interpolation. The method is efficient and simple, since it evolves the equations without the iterative steps involved in the multi-dimensional interpolation problem. The absence of iterative steps in the present technique makes it very suitable for the problems in which small time steps and grid sizes are required and the simplicity of the method makes it very suitable for parallel computer. Therefore, the method provides numerical algorithms which are more efficient than other classical schemes.  相似文献   

20.
Regularized shallow water equations are derived as based on a regularization of the Navier-Stokes equations in the form of quasi-gasdynamic and quasi-hydrodynamic equations. Efficient finite-difference algorithms based on the regularized shallow water equations are proposed for the numerical simulation of shallow water flows. The capabilities of the model are examined by computing a test Riemann problem, the flow over an obstacle, and asymmetric dam break.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号