首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Important matrix-valued functions f (A) are, e.g., the inverse A −1, the square root and the sign function. Their evaluation for large matrices arising from pdes is not an easy task and needs techniques exploiting appropriate structures of the matrices A and f (A) (often f (A) possesses this structure only approximately). However, intermediate matrices arising during the evaluation may lose the structure of the initial matrix. This would make the computations inefficient and even infeasible. However, the main result of this paper is that an iterative fixed-point like process for the evaluation of f (A) can be transformed, under certain general assumptions, into another process which preserves the convergence rate and benefits from the underlying structure. It is shown how this result applies to matrices in a tensor format with a bounded tensor rank and to the structure of the hierarchical matrix technique. We demonstrate our results by verifying all requirements in the case of the iterative computation of A −1 and . This work was performed during the stay of the third author at the Max-Planck-Institute for Mathematics in the Sciences (Leipzig) and also supported by the Russian Fund of Basic Research (grants 05-01-00721, 04-07-90336) and a Priority Research Grant of the Department of Mathematical Sciences of the Russian Academy of Sciences.  相似文献   

2.
In this paper we study the use of the Fourier, Sine and Cosine Transform for solving or preconditioning linear systems, which arise from the discretization of elliptic problems. Recently, R. Chan and T. Chan considered circulant matrices for solving such systems. Instead of using circulant matrices, which are based on the Fourier Transform, we apply the Fourier and the Sine Transform directly. It is shown that tridiagonal matrices arising from the discretization of an onedimensional elliptic PDE are connected with circulant matrices by congruence transformations with the Fourier or the Sine matrix. Therefore, we can solve such linear systems directly, using only Fast Fourier Transforms and the Sherman-Morrison-Woodbury formula. The Fast Fourier Transform is highly parallelizable, and thus such an algorithm is interesting on a parallel computer. Moreover, similar relations hold between block tridiagonal matrices and Block Toeplitz-plus-Hankel matrices of ordern 2×n 2 in the 2D case. This can be used to define in some sense natural approximations to the given matrix which lead to preconditioners for solving such linear systems.  相似文献   

3.
Summary An Alternating Direction Implicit method is analyzed for the solution of linear systems arising in high-order, tensor-product orthogonal spline collocation applied to some separable, second order, linear, elliptic partial differential equations in rectangles. On anNxN partition, with Jordan's selection of the acceleration parameters, the method requiresO(N 2 ln 2 N) arithmetic operations to produce an approximation whose accuracy, in theH 1-norm, is that of the collocation solution.  相似文献   

4.
5.
Discretizing a symmetric elliptic boundary value problem by a finite element method results in a system of linear equations with a symmetric positive definite coefficient matrix. This system can be solved iteratively by a preconditioned conjugate gradient method. In this paper a preconditioning matrix is proposed that can be constructed for all finite element methods if a mild condition for the node numbering is fulfilled. Such a numbering can be constructed using a variant of the reverse Cuthill-McKee algorithm.  相似文献   

6.
Summary Based on the framework of subspace splitting and the additive Schwarz scheme, we give bounds for the condition number of multilevel preconditioners for sparse grid discretizations of elliptic model problems. For a BXP-like preconditioner we derive an estimate of the optimal orderO(1) and for a HB-like variant we obtain an estimate of the orderO(k 2 ·2 k/2 ), wherek denotes the number of levels employed. Furthermore, we confirm these results by numerically computed condition numbers.  相似文献   

7.
We perform the a posteriori error analysis of residual type of transmission problem with sign changing coefficients. According to Bonnet-BenDhia et al. (2010) [9], if the contrast is large enough, the continuous problem can be transformed into a coercive one. We further show that a similar property holds for the discrete problem for any regular meshes, extending the framework from Bonnet-BenDhia et al. [9]. The reliability and efficiency of the proposed estimator are confirmed by some numerical tests.  相似文献   

8.
A nonlinear coupled elliptic system modelling a large class of engineering problems was discussed in [A.F.D. Loula, J. Zhu, Finite element analysis of a coupled nonlinear system, Comp. Appl. Math. 20 (3) (2001) 321–339; J. Zhu, A.F.D. Loula, Mixed finite element analysis of a thermally nonlinear coupled problem, Numer. Methods Partial Differential Equations 22 (1) (2006) 180–196]. The convergence analysis of iterative finite element approximation to the solution was done under an assumption of ‘small’ solution or source data which guarantees the uniqueness of the nonlinear coupled system. Generally, a nonlinear system may have multiple solutions. In this work, the regularity of the weak solutions is further studied. The nonlinear finite element approximations to the nonsingular solutions are then proposed and analyzed. Finally, the optimal order error estimates in H1H1-norm and L2L2-norm as well as in W1,pW1,p-norm and LpLp-norm are obtained.  相似文献   

9.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

10.
Summary. We study a multilevel preconditioner for the Galerkin boundary element matrix arising from a symmetric positive-definite bilinear form. The associated energy norm is assumed to be equivalent to a Sobolev norm of positive, possibly fractional, order m on a bounded (open or closed) surface of dimension d, with . We consider piecewise linear approximation on triangular elements. Successive levels of the mesh are created by selectively subdividing elements within local refinement zones. Hanging nodes may be created and the global mesh ratio can grow exponentially with the number of levels. The coarse-grid correction consists of an exact solve, and the correction on each finer grid amounts to a simple diagonal scaling involving only those degrees of freedom whose associated nodal basis functions overlap the refinement zone. Under appropriate assumptions on the choice of refinement zones, the condition number of the preconditioned system is shown to be bounded by a constant independent of the number of degrees of freedom, the number of levels and the global mesh ratio. In addition to applying to Galerkin discretisation of hypersingular boundary integral equations, the theory covers finite element methods for positive-definite, self-adjoint elliptic problems with Dirichlet boundary conditions. Received October 5, 2001 / Revised version received December 5, 2001 / Published online April 17, 2002 The support of this work through Visiting Fellowship grant GR/N21970 from the Engineering and Physical Sciences Research Council of Great Britain is gratefully acknowledged. The second author was also supported by the Australian Research Council  相似文献   

11.
In this study, the topics of grid generation and FEM applications are studied together following their natural synergy. We consider the following three tetrahedral grid generators: NETGEN, TetGen, and Gmsh. After that, the performance of the MIC(0) preconditioned conjugate gradient (PCG) solver is analyzed for both conforming and non-conforming linear FEM problems. If positive off-diagonal entries appear in the corresponding matrix, a diagonal compensation is applied to get an auxiliary MM-matrix allowing a stable MIC(0) factorization. The presented numerical experiments for elliptic and parabolic problems well illustrate the similar PCG convergence rate of the MIC(0) preconditioner for both, structured and unstructured grids.  相似文献   

12.
This paper provides a sufficient condition for the discrete maximum principle for a fully discrete linear simplicial finite element discretization of a reaction-diffusion problem to hold. It explicitly bounds the dihedral angles and heights of simplices in the finite element partition in terms of the magnitude of the reaction coefficient and the spatial dimension. As a result, it can be computed how small the acute simplices should be for the discrete maximum principle to be valid. Numerical experiments suggest that the bound, which considerably improves a similar bound in [P.G. Ciarlet, P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2 (1973) 17-31.], is in fact sharp.  相似文献   

13.
This paper is concerned with the construction and analysis of multilevel Schwarz preconditioners for partition of unity methods applied to elliptic problems. We show under which conditions on a given multilevel partition of unity hierarchy (MPUM) one even obtains uniformly bounded condition numbers and how to realize such requirements. The main anlytical tools are certain norm equivalences based on two-level splits providing frames that are stable under taking subsets. This work has been supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-202-00286 (BREAKING COMPLEXITY), by the Leibniz-Programme of the German Research Foundation (DFG), and by the SFB 401 funded by DFG.  相似文献   

14.
We present the results of numerical experiments aimed at comparing two recently proposed sparse approximate inverse preconditioners from the point of view of robustness, cost, and effectiveness. Results for a standard ILU preconditioner are also included. The numerical experiments were carried out on a Cray C98 vector processor. This work was partially supported by the GA AS CR under grant 2030706 and by the grant GA CR 205/96/0921.  相似文献   

15.
Summary. Modeling of micromagnetic phenomena typically faces the minimization of a non-convex problem, which gives rise to highly oscillatory magnetization structures. Mathematically, this necessitates to extend the notion of Lebesgue-type solutions to Young-measure valued solutions. The present work proposes and analyzes a conforming finite element method that is based on an active set strategy to compute efficiently discrete solutions of the generalized minimization problem. Computational experiments are given to show the efficiency of the scheme. Received January 20, 2000 / Published online May 30, 2001  相似文献   

16.
The classical way of solving the time-harmonic linear acousto-elastic wave problem is to discretize the equations with finite elements or finite differences. This approach leads to large-scale indefinite complex-valued linear systems. For these kinds of systems, it is difficult to construct efficient iterative solution methods. That is why we use an alternative approach and solve the time-harmonic problem by controlling the solution of the corresponding time dependent wave equation.In this paper, we use an unsymmetric formulation, where fluid-structure interaction is modeled as a coupling between pressure and displacement. The coupled problem is discretized in space domain with spectral elements and in time domain with central finite differences. After discretization, exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method.  相似文献   

17.
A new approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs was introduced in Fokas [A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A 53 (1997) 1411–1443]. For linear elliptic PDEs, an important aspect of this approach is the characterization of a generalized Dirichlet to Neumann map: given the derivative of the solution along a direction of an arbitrary angle to the boundary, the derivative of the solution perpendicularly to this direction is computed without solving on the interior of the domain. This is based on the analysis of the so-called global relation, an equation which couples known and unknown components of the derivative on the boundary and which is valid for all values of a complex parameter k. A collocation-type numerical method for solving the global relation for the Laplace equation in an arbitrary bounded convex polygon was introduced in Fulton et al. [An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465–483]. Here, by choosing a different set of the “collocation points” (values for k), we present a significant improvement of the results in Fulton et al. [An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465–483]. The new collocation points lead to well-conditioned collocation methods. Their combination with sine basis functions leads to a collocation matrix whose diagonal blocks are point diagonal matrices yielding efficient implementation of iterative methods; numerical experimentation suggests quadratic convergence. The choice of Chebyshev basis functions leads to higher order convergence, which for regular polygons appear to be exponential.  相似文献   

18.
Summary We analyse multi-grid applied to anisotropic equations within the framework of smoothing and approximation-properties developed by Hack busch. For a model anisotropic equation on a square, we give an up-till-now missing proof of an estimate concerning the approximation property which is essential to show robustness. Furthermore, we show a corresponding estimate for a model anisotropic equation on an L-shaped domain. The existing estimates for the smoothing property are not suitable to prove robustness for either 2-cyclic Gauss-Seidel smoothers or for less regular problems such as our second model equation. For both cases, we give sharper estimates. By combination of our results concerning smoothing- and approximation-properties, robustness of W-cycle multi-grid applied to both our model equations will follow for a number of smoothers.  相似文献   

19.
In Demmel et al. (Numer. Math. 106(2), 199–224, 2007) we showed that a large class of fast recursive matrix multiplication algorithms is stable in a normwise sense, and that in fact if multiplication of n-by-n matrices can be done by any algorithm in O(n ω+η ) operations for any η >  0, then it can be done stably in O(n ω+η ) operations for any η >  0. Here we extend this result to show that essentially all standard linear algebra operations, including LU decomposition, QR decomposition, linear equation solving, matrix inversion, solving least squares problems, (generalized) eigenvalue problems and the singular value decomposition can also be done stably (in a normwise sense) in O(n ω+η ) operations. J. Demmel acknowledges support of NSF under grants CCF-0444486, ACI-00090127, CNS-0325873 and of DOE under grant DE-FC02-01ER25478.  相似文献   

20.
Singular integral equations with Cauchy kernel and piecewise-continuous matrix coefficients on open and closed smooth curves are replaced by integral equations with smooth kernels of the form(t–)[(t–) 2n 2 (t) 2]–1,0, wheren(t), t , is a continuous field of unit vectors non-tangential to . we give necessary and sufficient conditions under which the approximating equations have unique solutions and these solutions converge to the solution of the original equation. For the scalar case and the spaceL 2() these conditions coincide with the strong ellipticity of the given equation.This work was fulfilled during the first author's visit to the Weierstrass Institute for Applied Analysis and Stochastics, Berlin in October 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号