首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A meshless method of dual reciprocity hybrid radial boundary node method (DHRBNM) for the analysis of arbitrary Kirchhoff plates is presented, which combines the advantageous properties of meshless method, radial point interpolation method (RPIM) and BEM. The solution in present method comprises two parts, i.e., the complementary solution and the particular solution. The complementary solution is solved by hybrid radial boundary node method (HRBNM), in which a three-field interpolation scheme is employed, and the boundary variables are approximated by RPIM, which is applied instead of moving least square (MLS) and obtains the Kronecker’s delta property where the traditional HBNM does not satisfy. The internal variables are interpolated by two groups of symmetric fundamental solutions. Based on those, a hybrid displacement variational principle for Kirchhoff plates is developed, and a meshless method of HRBNM for solving biharmonic problems is obtained, by which the complementary solution can be solved.  相似文献   

2.
We study the first boundary value problem for the second-order fully nonlinear parabolic equation under natural structure conditions. The 1 , Q solution has a priori W1,0 infinite bound. And moreover we prove the esistence of viscosity solution by using the accretive operator. This is the extension of the method used in [ I ] . Our method has the advantage that the existence of solution does not depend on the esistence of super- and subsolutions such as perron's method. Finally the uniqueness of viscosity solution is proved by using the method developed in [2] and [3].  相似文献   

3.
We consider the solution of the problem of elastic equilibrium of a three-dimensional orthotropic plate in the absence of displacements on the end surfaces under the action of forces applied to the lateral surfaces. The solution of the original problem by Vekua's method is reduced to the solution of a recursive sequence of two-dimensional problems. A numerical solution of these problems is obtained by computer using the finite-difference method. The effect of the number of Legendre polynomials on the accuracy with which the boundary conditions are satisfied is investigated.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 59, pp. 77–84, 1986.  相似文献   

4.
We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ Cd+2[ab].  相似文献   

5.
Starting from the solutions of soliton equations and corresponding eigenfunctions obtained by Darboux transformation, we present a new method to solve soliton equations with self-consistent sources (SESCS) based on method of variation of parameters. The KdV equation with self-consistent sources (KdVSCS) is used as a model to illustrate this new method. In addition, we apply this method to construct some new solutions of the derivative nonlinear Schrödinger equation with self-consistent sources (DNLSSCS) such as phase solution, dark soliton solution, bright soliton solution and breather-type solution.  相似文献   

6.
Complex Monge-Ampère equation is a nonlinear equation with high degree, so its solution is very difficult to get. How to get the plurisubharmonic solution of Dirichlet problem of complex Monge-Ampère equation on the Cartan-Hartogs domain of the second type is discussed by using the analytic method in this paper. Firstly, the complex Monge-Ampère equation is reduced to a nonlinear second-order ordinary differential equation (ODE) by using quite different method. Secondly, the solution of the Dirichlet problem is given in semi-explicit formula, and under a special case the exact solution is obtained. These results may be helpful for the numerical method of Dirichlet problem of complex Monge-Ampère equation on the Cartan-Hartogs domain.  相似文献   

7.
秦惠增  商妮娜 《数学学报》2006,49(1):225-230
本文用比较直接的方法研究Painleve方程的渐近解和连同公式:(1)先求出数值解,然后用最小二乘法拟合出最佳渐近解;(2)根据最佳渐近解的表达形式,用谐波平衡法得到振荡渐近解与参数之间的依赖关系,即连同公式.当参数α,β,γ和δ满足一些条件时,对一般实的第五类Painleve方程,我们找出了振荡渐近解和连同公式.  相似文献   

8.
This work proposes a method for embedding evolutionary strategy (ES) in ordinal optimization (OO), abbreviated as ESOO, for solving real-time hard optimization problems with time-consuming evaluation of the objective function and a huge discrete solution space. Firstly, an approximate model that is based on a radial basis function (RBF) network is utilized to evaluate approximately the objective value of a solution. Secondly, ES associated with the approximate model is applied to generate a representative subset from a huge discrete solution space. Finally, the optimal computing budget allocation (OCBA) technique is adopted to select the best solution in the representative subset as the obtained “good enough” solution. The proposed method is applied to a hotel booking limits (HBL) problem, which is formulated as a stochastic combinatorial optimization problem with a huge discrete solution space. The good enough booking limits, obtained by the proposed method, have promising solution quality, and the computational efficiency of the method makes it suitable for real-time applications. To demonstrate the computational efficiency of the proposed method and the quality of the obtained solution, it is compared with two competing methods – the canonical ES and the genetic algorithm (GA). Test results demonstrate that the proposed approach greatly outperforms the canonical ES and GA.  相似文献   

9.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

10.
This paper presents an efficient method of solving Queen's linearized equations for steady plane flow of an incompressible, viscous Newtonian fluid past a cylindrical body of arbitrary cross-section. The numerical solution technique is the well known direct boundary element method. Use of a fundamental solution of Oseen's equations, the ‘Oseenlet’, allows the problem to be reduced to boundary integrals and numerical solution then only requires boundary discretization. The formulation and solution method are validated by computing the net forces acting on a single circular cylinder, two equal but separated circular cylinders and a single elliptic cylinder, and comparing these with other published results. A boundary element representation of the full Navier-Stokes equations is also used to evaluate the drag acting on a single circular cylinder by matching with the numerical Oseen solution in the far field.  相似文献   

11.
This paper presents a method of sensitivity analysis on the cost coefficients and the right-hand sides for most variants of the primal–dual interior point method. We first define an ε-optimal solution to describe the characteristics of the final solution obtained by the primal–dual interior point method. Then an ε-sensitivity analysis is defined to determine the characteristic region where the final solution remains the ε-optimal solution as a cost coefficient or a right-hand side changes. To develop the method of ε-sensitivity analysis, we first derive the expressions for the final solution from data which are commonly maintained in most variants of the primal–dual interior point method. Then we extract the characteristic regions on the cost coefficients and the right-hand sides by manipulating the mathematical expressions for the final solution. Finally, we show that in the nondegenerate case, the characteristic regions obtained by ε-sensitivity analysis are convergent to those obtained by sensitivity analysis in the simplex algorithm.  相似文献   

12.
We propose a multiscale finite element method for solving second order elliptic equations with rapidly oscillating coefficients. The main purpose is to design a numerical method which is capable of correctly capturing the large scale components of the solution on a coarse grid without accurately resolving all the small scale features in the solution. This is accomplished by incorporating the local microstructures of the differential operator into the finite element base functions. As a consequence, the base functions are adapted to the local properties of the differential operator. In this paper, we provide a detailed convergence analysis of our method under the assumption that the oscillating coefficient is of two scales and is periodic in the fast scale. While such a simplifying assumption is not required by our method, it allows us to use homogenization theory to obtain a useful asymptotic solution structure. The issue of boundary conditions for the base functions will be discussed. Our numerical experiments demonstrate convincingly that our multiscale method indeed converges to the correct solution, independently of the small scale in the homogenization limit. Application of our method to problems with continuous scales is also considered.

  相似文献   


13.
The purpose of this paper is to analyze an efficient method for the solution of the nonlinear system resulting from the discretization of the elliptic Monge-Ampère equation by a $C^0$ interior penalty method with Lagrange finite elements. We consider the two-grid method for nonlinear equations which consists in solving the discrete nonlinear system on a coarse mesh and using that solution as initial guess for one iteration of Newton's method on a finer mesh. Thus both steps are inexpensive. We give quasi-optimal $W^{1,\infty}$ error estimates for the discretization and estimate the difference between the interior penalty solution and the two-grid numerical solution. Numerical experiments confirm the computational efficiency of the approach compared to Newton's method on the fine mesh.  相似文献   

14.
This paper discusses the problem of determining an unknown source which depends only on one variable in two-dimensional Poisson equation from one supplementary temperature measurement at an internal point. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The regularization solution is obtained by the modified regularization method. For the regularization solution, the Hölder type stability estimate between the regularization solution and the exact solution is given. Numerical results are presented to illustrate the accuracy and efficiency of this method.  相似文献   

15.
This paper is devoted to the study of the one dimensional non homogeneous heat equation coupled to Dirichlet Boundary Conditions.We obtain the explicit expression of the solution of the linear equation by means of a direct integral in an unbounded domain. The main novelty of this expression relies in the fact that the solution is not given as a series of infinity terms. On our expression the solution is given as a sum of two integrals with a finite number of terms on the kernel.The main novelty is that, on the contrary to the classical method, where the solutions are derived by a direct application of the separation of variables method, on the basis of the spectral theory and the Fourier Series expansion, the solution is obtained by means of the application of the Laplace Transform with respect to the time variable. As a consequence, for any t0 fixed, we must solve an Ordinary Differential Equation on the spatial variable, coupled to Dirichlet Boundary conditions. The solution of such a problem is given by the construction of the related Green’s function.  相似文献   

16.
The Adomian decomposition method and the asymptotic decomposition method give the near-field approximate solution and far-field approximate solution, respectively, for linear and nonlinear differential equations. The Padé approximants give solution continuation of series solutions, but the continuation is usually effective only on some finite domain, and it can not always give the asymptotic behavior as the independent variables approach infinity. We investigate the global approximate solution by matching the near-field approximation derived from the Adomian decomposition method with the far-field approximation derived from the asymptotic decomposition method for linear and nonlinear differential equations. For several examples we find that there exists an overlap between the near-field approximation and the far-field approximation, so we can match them to obtain a global approximate solution. For other nonlinear examples where the series solution from the Adomian decomposition method has a finite convergent domain, we can match the Padé approximant of the near-field approximation with the far-field approximation to obtain a global approximate solution representing the true, entire solution over an infinite domain.  相似文献   

17.
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R2 and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.  相似文献   

18.
Summary The paper obtains an explicit solution of the characteristic initial value problem for the wave equation in odd spatial dimensions with radial initial data via solution of a characteristic boundary value problem involving a singular differential equation. The solution of the latter problem is obtained by a modified Riemann method. It is shown that on the time axis the solution of the original problem reduces to the solution that is obtainable by the use of Asgeirsson’s mean value theorem. Entrata in Redazione il 29 agosto 1971.  相似文献   

19.
A numerical solution of the generalized Burger’s–Huxley equation, based on collocation method using Radial basis functions (RBFs), called Kansa’s approach is presented. The numerical results are compared with the exact solution, Adomian decomposition method (ADM) and Variational iteration method (VIM). Highly accurate and efficient results are obtained by RBFs method. Excellent agreement with the exact solution is observed while better (or same) accuracy is obtained than other numerical schemes cited in this work.  相似文献   

20.
Solutions of large sparse linear systems of equations are usually obtained iteratively by constructing a smaller dimensional subspace such as a Krylov subspace. The convergence of these methods is sometimes hampered by the presence of small eigenvalues, in which case, some form of deflation can help improve convergence. The method presented in this paper enables the solution to be approximated by focusing the attention directly on the ‘small’ eigenspace (‘singular vector’ space). It is based on embedding the solution of the linear system within the eigenvalue problem (singular value problem) in order to facilitate the direct use of methods such as implicitly restarted Arnoldi or Jacobi–Davidson for the linear system solution. The proposed method, called ‘solution by null‐space approximation and projection’ (SNAP), differs from other similar approaches in that it converts the non‐homogeneous system into a homogeneous one by constructing an annihilator of the right‐hand side. The solution then lies in the null space of the resulting matrix. We examine the construction of a sequence of approximate null spaces using a Jacobi–Davidson style singular value decomposition method, called restarted SNAP‐JD, from which an approximate solution can be obtained. Relevant theory is discussed and the method is illustrated by numerical examples where SNAP is compared with both GMRES and GMRES‐IR. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号