首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

2.
Jacobian smoothing Brown’s method for nonlinear complementarity problems (NCP) is studied in this paper. This method is a generalization of classical Brown’s method. It belongs to the class of Jacobian smoothing methods for solving semismooth equations. Local convergence of the proposed method is proved in the case of a strictly complementary solution of NCP. Furthermore, a locally convergent hybrid method for general NCP is introduced. Some numerical experiments are also presented.  相似文献   

3.
In this paper, we first investigate the invertibility of a class of matrices. Based on the obtained results, we then discuss the solvability of Newton equations appearing in the smoothing-type algorithm for solving the second-order cone complementarity problem (SOCCP). A condition ensuring the solvability of such a system of Newton equations is given. In addition, our results also show that the assumption that the Jacobian matrix of the function involved in the SOCCP is a P0-matrix is not enough for ensuring the solvability of such a system of Newton equations, which is different from the one of smoothing-type algorithms for solving many traditional optimization problems in n.  相似文献   

4.
In this paper, we propose a modified semismooth Newton method for a class of complementarity problems arising from the discretization of free boundary problems and establish its monotone convergence. We show that under appropriate conditions, the method reduces to semismooth Newton method. We also do some preliminary numerical experiments to show the efficiency of the proposed method.  相似文献   

5.
Sanja Rapajić  Zoltan Pap 《PAMM》2013,13(1):385-386
Various iterative methods for solving nonlinear complementarity problems (NCP) are developed in recent years. In this paper we propose Jacobian smoothing inexact Newton methods for NCP with different nonmonotone strategies. The methods are based on semismooth equation reformulation of NCP by Fischer-Burmeister function. Nonmonotone line-search techniques are used for globalization procedure. Numerical performance of algorithms are compared. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
By using a new type of smoothing function, we first reformulate the generalized nonlinear complementarity problem over a polyhedral cone as a smoothing system of equations, and then develop a smoothing Newton-type method for solving it. For the proposed method, we obtain its global convergence under milder conditions, and we further establish its local superlinear (quadratic) convergence rate under the BD-regular assumption. Preliminary numerical experiments are also reported in this paper.  相似文献   

7.
In this paper, we introduce the absolute value equations associated with second order cones (SOCAVE in short), which is a generalization of the absolute value equations discussed recently in the literature. It is proved that the SOCAVE is equivalent to a class of second order cone linear complementarity problems (SOCLCP in short). In particular, we propose a generalized Newton method for solving the SOCAVE and show that the proposed method is globally linearly and locally quadratically convergent under suitable assumptions. We also report some preliminary numerical results of the proposed method for solving the SOCAVE and the SOCLCP, which show the efficiency of the proposed method.  相似文献   

8.
Abstract. A new trust region algorithm for solving convex LC1 optimization problem is present-ed. It is proved that the algorithm is globally convergent and the rate of convergence is superlin-ear under some reasonable assumptions.  相似文献   

9.
In this paper, the problem of identifying the active constraints for constrained nonlinear programming and minimax problems at an isolated local solution is discussed. The correct identification of active constraints can improve the local convergence behavior of algorithms and considerably simplify algorithms for inequality constrained problems, so it is a useful adjunct to nonlinear optimization algorithms. Facchinei et al. [F. Facchinei, A. Fischer, C. Kanzow, On the accurate identification of active constraints, SIAM J. Optim. 9 (1998) 14-32] introduced an effective technique which can identify the active set in a neighborhood of a solution for nonlinear programming. In this paper, we first improve this conclusion to be more suitable for infeasible algorithms such as the strongly sub-feasible direction method and the penalty function method. Then, we present the identification technique of active constraints for constrained minimax problems without strict complementarity and linear independence. Some numerical results illustrating the identification technique are reported.  相似文献   

10.
We consider an inverse problem arising from the semi-definite quadratic programming (SDQP) problem. We represent this problem as a cone-constrained minimization problem and its dual (denoted ISDQD) is a semismoothly differentiable (SC1SC1) convex programming problem with fewer variables than the original one. The Karush–Kuhn–Tucker conditions of the dual problem (ISDQD) can be formulated as a system of semismooth equations which involves the projection onto the cone of positive semi-definite matrices. A smoothing Newton method is given for getting a Karush–Kuhn–Tucker point of ISDQD. The proposed method needs to compute the directional derivative of the smoothing projector at the corresponding point and to solve one linear system per iteration. The quadratic convergence of the smoothing Newton method is proved under a suitable condition. Numerical experiments are reported to show that the smoothing Newton method is very effective for solving this type of inverse quadratic programming problems.  相似文献   

11.
In this paper, using the Gabriel–Moré smoothing function of the median function, a smooth homotopy method for solving nonsmooth equation reformulation of bounded box constrained variational inequality problem VIP(l,u,Fl,u,F) is given. Without any monotonicity condition on the defining map FF, for starting point chosen almost everywhere in RnRn, existence and convergence of the homotopy pathway are proven. Nevertheless, it is also proven that, if the starting point is chosen to be an interior point of the box, the proposed homotopy method can also serve as an interior point method.  相似文献   

12.
The Newton method is one of the most powerful tools used to solve systems of nonlinear equations. Its set-valued generalization, considered in this work, allows one to solve also nonlinear equations with geometric constraints and systems of inequalities in a unified manner. The emphasis is given to systems of linear inequalities. The study of the well-posedness of the algorithm and of its convergence is fulfilled in the framework of modern variational analysis.  相似文献   

13.
In the paper, we prove the Hölder continuous property of the Jacobian of the function generated from the dual of the power spectrum estimation problem. It follows that the convergence of the Newton method for the problem is at least of order where m is the order of the trigonometric bases. This result theoretically confirms the numerical observation by Potter (1990) and Cole and Goodrich (1993).  相似文献   

14.
In the Newton/log-barrier method, Newton steps are taken for the log-barrier function for a fixed value of the barrier parameter until a certain convergence criterion is satisfied. The barrier parameter is then decreased and the Newton process is repeated. A naive analysis indicates that Newton’s method does not exhibit superlinear convergence to the minimizer of each instance of the log-barrier function until it reaches a very small neighborhood, namely within O2) of the minimizer, where μ is the barrier parameter. By analyzing the structure of the barrier Hessian and gradient in terms of the subspace of active constraint gradients and the associated null space, we show that this neighborhood is in fact much larger –Oσ) for any σ∈(1,2] – thus explaining why reasonably fast local convergence can be attained in practice. Moreover, we show that the overall convergence rate of the Newton/log-barrier algorithm is superlinear in the number of function/derivative evaluations, provided that the nonlinear program is formulated with a linear objective and that the schedule for decreasing the barrier parameter is related in a certain way to the step length and convergence criteria for each Newton process. Received: October 10, 1997 / Accepted: September 10, 2000?Published online February 22, 2001  相似文献   

15.
Analogous to the nonlinear complementarity problem and the semi-definite complementarity problem, a popular approach to solving the second-order cone complementarity problem (SOCCP) is to reformulate it as an unconstrained minimization of a certain merit function over RnRn. In this paper, we present a descent method for solving the unconstrained minimization reformulation of the SOCCP which is based on the Fischer–Burmeister merit function (FBMF) associated with second-order cone [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327], and prove its global convergence. Particularly, we compare the numerical performance of the method for the symmetric affine SOCCP generated randomly with the FBMF approach [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327]. The comparison results indicate that, if a scaling strategy is imposed on the test problem, the descent method proposed is comparable with the merit function approach in the CPU time for solving test problems although the former may require more function evaluations.  相似文献   

16.
We prove convergence of the whole sequence generated by any of a large class of iterative algorithms for the symmetric linear complementarity problem (LCP), under the only hypothesis that a quadratic form associated with the LCP is bounded below on the nonnegative orthant. This hypothesis holds when the matrix is strictly copositive, and also when the matrix is copositive plus and the LCP is feasible. The proof is based upon the linear convergence rate of the sequence of functional values of the quadratic form. As a by-product, we obtain a decomposition result for copositive plus matrices. Finally, we prove that the distance from the generated sequence to the solution set (and the sequence itself, if its limit is a locally unique solution) have a linear rate of R-convergence.Research for this work was partially supported by CNPq grant No. 301280/86.  相似文献   

17.
This paper deals with a general nonlinear complementarity problem, where the underlying functions are assumed to be continuous. Based on a nonlinear complementarity function, it is transformed into a system of nonsmooth equations. Then, two kinds of approximate Newton methods for the nonsmooth equations are developed and their convergence are proved. Finally, numerical tests are also listed.  相似文献   

18.
In this paper, we present a smoothing homotopy method for solving ball-constrained variational inequalities by utilizing a similar Chen-Harker-Kanzow-Smale function to smooth Robinson’s normal equation. Without any monotonicity condition on the defining map F, for the starting point chosen almost everywhere in Rn, the existence and convergence of the homotopy pathway are proven. Numerical experiments illustrate that the method is feasible and effective.  相似文献   

19.
A new smoothing quasi-Newton method for nonlinear complementarity problems is presented. The method is a generalization of Thomas’ method for smooth nonlinear systems and has similar properties as Broyden's method. Local convergence is analyzed for a strictly complementary solution as well as for a degenerate solution. Presented numerical results demonstrate quite similar behavior of Thomas’ and Broyden's methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号