首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with a stencil-based implementation of a geometric multigrid method on semi-structured triangular grids (triangulations obtained by regular refinement of an irregular coarse triangulation) for linear finite element methods. An efficient and elegant procedure to construct these stencils using a reference stencil associated to a canonical hexagon is proposed. Local Fourier Analysis (LFA) is applied to obtain asymptotic convergence estimates. Numerical experiments are presented to illustrate the efficiency of this geometric multigrid algorithm, which is based on a three-color smoother.  相似文献   

2.
Summary This paper deals with a mixed finite element method for approximating a fourth order initial value problem arising from the nonstationary Stokes problem. For piecewise linear shape functions error estimates are given with convergence rates similar to the elliptic case. Some numerical computations will illustrate the theoretical results.  相似文献   

3.
A compact finite difference method with non-isotropic mesh is proposed for a two-dimensional fourth-order nonlinear elliptic boundary value problem. The existence and uniqueness of its solutions are investigated by the method of upper and lower solutions, without any requirement of the monotonicity of the nonlinear term. Three monotone and convergent iterations are provided for resolving the resulting discrete systems efficiently. The convergence and the fourth-order accuracy of the proposed method are proved. Numerical results demonstrate the high efficiency and advantages of this new approach.  相似文献   

4.
A preconditioned minimal residual method for nonsymmetric saddle point problems is analyzed. The proposed preconditioner is of block triangular form. The aim of this article is to show that a rigorous convergence analysis can be performed by using the field of values of the preconditioned linear system. As an example, a saddle point problem obtained from a mixed finite element discretization of the Oseen equations is considered. The convergence estimates obtained by using a field–of–values analysis are independent of the discretization parameter h. Several computational experiments supplement the theoretical results and illustrate the performance of the method. Received March 20, 1997 / Revised version received January 14, 1998  相似文献   

5.
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.  相似文献   

6.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

7.
Summary The finite element analysis of a cascade flow problem with a given velocity circulation round profiles is presented. The nonlinear problem for the stream function with nonstandard boundary conditions is discretized by conforming linear triangular elements. We deal with the properties of the discrete problem and study the convergence of the method both for polygonal and nonpolygonal domains, including the effect of numerical integration.  相似文献   

8.
Approximation theoretic results are obtained for approximation using continuous piecewise polynomials of degree p on meshes of triangular and quadrilateral elements. Estimates for the rate of convergence in Sobolev spaces , are given. The results are applied to estimate the rate of convergence when the p-version finite element method is used to approximate the -Laplacian. It is shown that the rate of convergence of the p-version is always at least that of the h-version (measured in terms of number of degrees of freedom used). If the solution is very smooth then the p-version attains an exponential rate of convergence. If the solution has certain types of singularity, the rate of convergence of the p-version is twice that of the h-version. The analysis generalises the work of Babuska and others to the case . In addition, the approximation theoretic results find immediate application for some types of spectral and spectral element methods. Received August 2, 1995 / Revised version received January 26, 1998  相似文献   

9.
In this paper, an adaptive finite element method for elliptic eigenvalue problems is studied. Both uniform convergence and optimal complexity of the adaptive finite element eigenvalue approximation are proved. The analysis is based on a certain relationship between the finite element eigenvalue approximation and the associated finite element boundary value approximation which is also established in the paper. This work was partially supported by the National Science Foundation of China under grant 10425105 and the National Basic Research Program under grant 2005CB321704.  相似文献   

10.
This paper provides a sufficient condition for the discrete maximum principle for a fully discrete linear simplicial finite element discretization of a reaction-diffusion problem to hold. It explicitly bounds the dihedral angles and heights of simplices in the finite element partition in terms of the magnitude of the reaction coefficient and the spatial dimension. As a result, it can be computed how small the acute simplices should be for the discrete maximum principle to be valid. Numerical experiments suggest that the bound, which considerably improves a similar bound in [P.G. Ciarlet, P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2 (1973) 17-31.], is in fact sharp.  相似文献   

11.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

12.
This paper addresses the finite element method for the two-dimensional time-dependent Schrödinger equation on an infinite strip by using artificial boundary conditions. We first reduce the original problem into an initial-boundary value problem in a bounded domain by introducing a transparent boundary condition, then fully discretize this reduced problem by applying the Crank-Nicolson scheme in time and a bilinear or quadratic finite element approximation in space. This scheme, by a rigorous analysis, has been proved to be unconditionally stable and convergent, and its convergence order has also been obtained. Finally, two numerical examples are given to verify the accuracy of the scheme.  相似文献   

13.
In this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf-sup constant is available, which is confirmed by some numerical results.  相似文献   

14.
This paper deals with the numerical simulation of the steady state two dimensional window Josephson junctions by finite element method. The model is represented by a sine-Gordon type composite PDE problem. Convergence and error analysis of the finite element approximation for this semilinear problem are presented. An efficient and reliable Newton-preconditioned conjugate gradient algorithm is proposed to solve the resulting nonlinear discrete system. Regular solution branches are computed using a simple continuation scheme. Numerical results associated with interesting physical phenomena are reported. Interface relaxation methods, which by taking advantage of special properties of the composite PDE, can further reduce the overall computational cost are proposed. The implementation and the associated numerical experiments of a particular interface relaxation scheme are also presented and discussed.  相似文献   

15.
Summary. An abstract error estimate for the approximation of semicoercive variational inequalities is obtained provided a certain condition holds for the exact solution. This condition turns out to be necessary as is demonstrated analytically and numerically. The results are applied to the finite element approximation of Poisson's equation with Signorini boundary conditions and to the obstacle problem for the beam with no fixed boundary conditions. For second order variational inequalities the condition is always satisfied, whereas for the beam problem the condition holds if the center of forces belongs to the interior of the convex hull of the contact set. Applying the error estimate yields optimal order of convergence in terms of the mesh size . The numerical convergence rates observed are in good agreement with the predicted ones. Received August 16, 1993 / Revised version received March 21, 1994  相似文献   

16.
Summary This paper studies finite element methods for a class of arch beam models. For both standard and mixed methods, existence and uniqueness results are proved, optimal rates of convergence are obtained and the superconvergence property is established. Reduced integration is shown to be an efficient method for arch beam problems and selected reduced integration is found to be identical to the mixed method. The significance of the analysis is threefold. The mixed method and the reduced integration methods converge uniformly at the optimal rate with respect to the arch thickness parameter, so they are locking free. Second, mixed method and reduced integration keep the superconvergence properties of the standard method. Finally, this is the first attempt to investigate the superconvergence of finite element methods for arch beam problems. We set up two types of superconvergence results: displacement at the nodal points and gradient at the Gauss points.This work was partially supported by the National Science Fundation grant CCR-88-20279  相似文献   

17.
Summary. We derive sufficient conditions under which the cascadic multi-grid method applied to nonconforming finite element discretizations yields an optimal solver. Key ingredients are optimal error estimates of such discretizations, which we therefore study in detail. We derive a new, efficient modified Morley finite element method. Optimal cascadic multi-grid methods are obtained for problems of second, and using a new smoother, of fourth order as well as for the Stokes problem. Received February 12, 1998 / Revised version received January 9, 2001 / Published online September 19, 2001  相似文献   

18.
In this paper, a fully discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct these solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property. Some numerical results are also given, which show that this method is highly efficient for the unsteady conduction-convection problems.  相似文献   

19.
An approximation scheme is defined for incompressible miscible displacement in porous media. This scheme is constructed by using two methods. Standard mixed finite element is used for the Darcy velocity equation. A characteristics-mixed finite element method is presented for the concentration equation. Characteristic approximation is applied to handle the convection part of the concentration equation, and a lowest-order mixed finite element spatial approximation is adopted to deal with the diffusion part. Thus, the scalar unknown concentration and the diffusive flux can be approximated simultaneously. In order to derive the optimal L2L2-norm error estimates, a post-processing step is included in the approximation to the scalar unknown concentration. This scheme conserves mass globally; in fact, on the discrete level, fluid is transported along the approximate characteristics. Numerical experiments are presented finally to validate the theoretical analysis.  相似文献   

20.
In this paper, we study a perfectly matched layer model for the three-dimensional time-dependent Maxwell’s equations. We develop both semi- and fully-discrete finite element methods for solving the truncated PML problem by Nedelec edge elements. Optimal convergence rates are proved for both semi- and fully-discrete schemes. To our knowledge, this is the first error analysis obtained for time domain finite element method for PML models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号