首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Maximum Minsum Dispersion Problem (Max-Minsum DP) is a strongly NP-Hard problem that belongs to the family of equitable dispersion problems. When dealing with dispersion, the operations research literature has focused on optimizing efficiency-based objectives while neglecting, for the most part, measures of equity. The most common efficiency-based functions are the sum of the inter-element distances or the minimum inter-element distance. Equitable dispersion problems, on the other hand, attempt to address the balance between efficiency and equity when selecting a subset of elements from a larger set. The objective of the Max-Minsum DP is to maximize the minimum aggregate dispersion among the chosen elements. We develop tabu search and GRASP solution procedures for this problem and compare them against the best in the literature. We also apply LocalSolver, a commercially available black-box optimizer, to compare our results. Our computational experiments show that we are able to establish new benchmarks in the solution of the Max-Minsum DP.  相似文献   

2.
In this work we apply the discontinuous Galekin (dG) spectral element method on meshes made of simplicial elements for the approximation of the elastodynamics equation. Our approach combines the high accuracy of spectral methods, the geometrical flexibility of simplicial elements and the computational efficiency of dG methods. We analyze the dissipation, dispersion and stability properties of the resulting scheme, with a focus on the choice of different sets of basis functions. Finally, we apply the method on benchmark as well as realistic test cases.  相似文献   

3.
Strong form collocation with radial basis approximation, called the radial basis collocation method (RBCM), is introduced for the numerical solution of elastodynamics. In this work, the proper weights for the boundary collocation equations to achieve the optimal convergence in elastodynamics are first derived. The von Neumann method is then introduced to investigate the dispersion characteristics of the semidiscrete RBCM equation. Very small dispersion error (< 1%) in RBCM can be achieved compared to linear and quadratic finite elements. The stability conditions of the RBCM spatial discretization in conjunction with the central difference temporal discretization are also derived. We show that the shape parameter of the radial basis functions not only has strong influence on the dispersion errors, it also has profound influence on temporal stability conditions in the case of lumped mass. Further, our stability analysis shows that, in general, a larger critical time step can be used in RBCM with central difference temporal discretization than that for finite elements with the same temporal discretization. Our analysis also suggests that although RBCM with lumped mass allows a much larger critical time step than that of RBCM with consistent mass, the later offers considerably better accuracy and should be considered in the transient analysis. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

4.
In this paper, we present a Lagrangian stochastic model for heavy particle dispersion in turbulence. The model includes the equation of motion for a heavy particle and a stochastic approach to predicting the velocity of fluid elements along the heavy particle trajectory. The trajectory crossing effect of heavy particles is described by using an Ito type stochastic differential equation combined with a fractional Langevin equation. The comparison of the predicted dispersion of four heavy particles with the observations shows that the model is potentially useful but requires further development.  相似文献   

5.
The propagation of pulses in unidirectionally coupled symmetric bistable elements is studied. The speeds of unstable traveling pulse waves in a ring of elements increase with pulse width in an exponential manner. This dispersion relation causes exponential increases in the duration of transient propagating pulses and the noise-sustained propagation of pulses, which are qualitatively the same as those in a reaction-diffusion-convection equation and a ring of sigmoidal neurons. However, the speeds of pulse fronts in propagating pulses depend on the backward pulse width. Properties of pulse transmission in an open chain of elements then differ from those in the above two systems qualitatively.  相似文献   

6.
Most optimization problems focus on efficiency-based objectives. Given the increasing awareness of system inequity resulting from solely pursuing efficiency, we conceptualize a number of new element-based equity-oriented measures in the dispersion context. We propose the equitable dispersion problem that maximizes the equity among elements based on the introduced measures in a system defined by inter-element distances. Given the proposed optimization framework, we develop corresponding mathematical programming formulations as well as their mixed-integer linear reformulations. We also discuss computational complexity issues, related graph-theoretic interpretations and provide some preliminary computational results.  相似文献   

7.
We construct a new family of triangular and quadrangular edge finite elements for the resolution of Maxwell equations which solves the problem of mass lumping, including the case of anisotropic media. The schemes obtained are analyzed through their numerical dispersion on regular meshes.  相似文献   

8.
对可压缩并含弥散的核废料污染问题,利用有限元块逼近技术提出了交替方向特征有限元格式,格式兼具特征线逼近技术及交替方向技术的优点,证明了格式的最佳H^1-收敛阶。  相似文献   

9.
10.
We solve numerically the Kirchhoff‐Love dynamic plate equation for an anisotropic heterogeneous material using a spectral method. A mixed velocity‐moment formulation is proposed for the space approximation allowing the use of classical Lagrange finite elements. The benefit of using high order elements is shown through a numerical dispersion analysis. The system resulting from this spatial discretization is solved analytically. Hence this method is particularly efficient for long duration experiments. This time evolution method is compared with explicit and implicit finite differences schemes in terms of accuracy and computation time. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

11.
The minimum covariance determinant (MCD) scatter estimator is a highly robust estimator for the dispersion matrix of a multivariate, elliptically symmetric distribution. It is relatively fast to compute and intuitively appealing. In this note we derive its influence function and compute the asymptotic variances of its elements. A comparison with the one step reweighted MCD and with S-estimators is made. Also finite-sample results are reported.  相似文献   

12.
A new method of determining the dynamic characteristics of multilayered semi-bounded media with defects of the inclusion or crack type at the layer interfaces [1] is used to solve antiplane problems. Systems of integral equations of the corresponding boundary-value problems are constructed and the properties of their kernels are investigated. The dispersion curves of the determinants and matrix elements of these systems are analysed as functions of the number of layers and their elastic and geometric characteristics.  相似文献   

13.
The mechanical characteristics of oriented glass-reinforced plastics stressed in shear are considered. Various methods of determining them are compared. The dispersion of the shear strength is characterized and the possibility of glass-reinforced plastics elements failing as a result of low interlaminar shear strength is discussed.Moscow Aviation Technological Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1008–1013, November–December, 1969.  相似文献   

14.
Finite element and finite difference methods for approximating the Maxwell system propagate numerical waves with slightly incorrect velocities, and this results in phase error in the computed solution. Indeed this error limits the type of problem that can be solved, because phase error accumulates during the computation and eventually destroys the solution. Here we propose a family of mass-lumped finite element schemes using edge elements. We emphasize in particular linear elements that are equivalent to the standard Yee FDTD scheme, and cubic elements that have superior phase accuracy. We prove theorems that allow us to perform a dispersion analysis of the two common families of edge elements on rectilinear grids. A result of this analysis is to provide some justification for the choice of the particular family we use. We also provide a limited selection of numerical results that show the efficiency of our scheme. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 63–88, 1998  相似文献   

15.
A numerical model has been developed that employs the penalty function finite element technique to solve the vertically averaged hydrodynamic and turbulence model equations for a water body using isoparametric elements. The full elliptic forms of the equations are solved, thereby allowing recirculating flows to be calculated. Alternative momentum dispersion and turbulence closure models are proposed and evaluated by comparing model predictions with experimental data for strongly curved subcritical open channel flow. The results of these simulations indicate that the depth-averaged two-equation k-ε turbulence model yields excellent agreement with experimental observations. In addition, it appears that neither the streamline curvature modification of the depth-averaged k-ε model, nor the momentum dispersion models based on the assumption of helicoidal flow in a curved channel, yield significant improvement in the present model predictions. Overall model predictions are found to be as good as those of a more complex and restricted three-dimensional model.  相似文献   

16.
We propose a method that allows relating the quantum squeezing effect to the classical instability by establishing evolution equations for elements of the dispersion matrix directly in terms of elements of the stability matrix. The solution of these equations is written in terms of the evolution operator. Knowing this operator, we can analyze the system instability at finite times. Based on the developed formalism, we investigate two physical systems: the degenerate and nondegenerate parametric amplifiers with external -shaped pulses. We show that we can either amplify or, on the contrary, weaken both the squeezing effect and the system instability using -pulses.  相似文献   

17.
热弥散系数是与流体的物性和多孔介质结构有关的,表征多孔介质传热传质强弱的重要参数.该文建立了分形多孔介质的孔喉结构模型,研究了在孔喉结构处流体由湍流状态变为层流状态的局部水头损失和速度弥散效应,在考虑微观孔喉结构和速度弥散效应的影响下,推导了热弥散系数关系式.研究表明,热弥散系数与孔喉比、孔喉结构个数和迂曲分形维数成正比,与孔隙率和面积分形维数成反比.进一步研究发现,孔喉比在1~150范围内对速度弥散效应有显著影响,流体在孔喉结构处存在局部水头损失,导致速度弥散效应增强,热弥散系数增大.  相似文献   

18.
Numerical approaches studying the reduction of dispersion error for acoustic problems so far have focused on the models without impedance. Whereas, the practical acoustic problems usually involve impedance. This situation indicates that it is essential to study the numerical methods by taking into account the influence of impedance. In this work, an optimized finite element method is introduced to solve the three-dimensional steady-state acoustic problems with impedance. This technique resorts to heuristic optimization techniques to determine the integration points locations in elements. It develops a strategy to optimize the integration points locations, and makes use of adaptive genetic algorithm to achieve the best integration points locations for the construction of element matrix. By using the proposed method, a three-dimensional acoustic tube model with impedance is investigated, and the dispersion error, accuracy, convergence and efficiency of solutions are all compared to those of some existing numerical methods and reference solutions. Simultaneously, two practical cavity models are studied to verify the effectiveness and strongpoints of the proposed method as compared to existing numerical methods. Hence, the proposed method can be more widely applied to solve practical acoustic problems, yielding more accurate solutions.  相似文献   

19.
Sharp bounds on expectations of lifetimes of coherent and mixed systems composed of elements with independent and either identically or non-identically distributed lifetimes are expressed in terms of expected lifetimes of components. Similar evaluations are concluded for the respective mean residual lifetimes. In the IID case, improved inequalities dependent on a concentration parameter connected to the Gini dispersion index are obtained. The results can be used to compare systems with component lifetimes ordered in the convex ordering. In the INID case, some refined bounds are derived in terms of the expected lifetimes of series systems of smaller sizes, and the expected lifetime of single unit for the equivalent systems with IID components. The latter can be further simplified in the case of weak Schur-concavity and Schur-convexity of the system generalized domination polynomial.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号