首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide a new semilocal convergence analysis for generating an inexact Newton method converging to a solution of a nonlinear equation in a Banach space setting. Our analysis is based on our idea of recurrent functions. Our results are compared favorably to earlier ones by others and us (Argyros (2007, 2009) [5] and [6], Argyros and Hilout (2009) [7], Guo (2007) [15], Shen and Li (2008) [18], Li and Shen (2008) [19], Shen and Li (2009) [20]). Numerical examples are provided to show that our results apply, but not earlier ones [15], [18], [19] and [20].  相似文献   

2.
We present a semilocal convergence theorem for Newton’s method (NM) on spaces with a convergence structure. Using our new idea of recurrent functions, we provide a tighter analysis, with weaker hypotheses than before and with the same computational cost as for Argyros (1996, 1997, 1997, 2007) [1], [2], [3] and [5], Meyer (1984, 1987, 1992) [13], [14] and [15]. Numerical examples are provided for solving equations in cases not covered before.  相似文献   

3.
We introduce the new idea of recurrent functions to provide a semilocal convergence analysis for an inexact Newton-type method, using outer inverses. It turns out that our sufficient convergence conditions are weaker than in earlier studies in many interesting cases (Argyros, 2004 [5] and [6], Argyros, 2007 [7], Dennis, 1971 [14], Deuflhard and Heindl, 1979 [15], Gutiérrez, 1997 [16], Gutiérrez et al., 1995 [17], Häubler, 1986 [18], Huang, 1993 [19], Kantorovich and Akilov, 1982 [20], Nashed and Chen, 1993 [21], Potra, 1982 [22], Potra, 1985 [23]).  相似文献   

4.
The semi-local convergence of a Newton-type method used to solve nonlinear equations in a Banach space is studied. We also give, as two important applications, convergence analyses of two classes of two-point Newton-type methods including a method mentioned in [5] and the midpoint method studied in [1], [2] and [12]. Recently, interest has been shown in such methods [3] and [4].  相似文献   

5.
This note is motivated from some recent papers treating the problem of the existence of a solution for abstract differential equations with fractional derivatives. We show that the existence results in [Agarwal et al. (2009) [1], Belmekki and Benchohra (2010) [2], Darwish et al. (2009) [3], Hu et al. (2009) [4], Mophou and N’Guérékata (2009) [6] and [7], Mophou (2010) [8] and [9], Muslim (2009) [10], Pandey et al. (2009) [11], Rashid and El-Qaderi (2009) [12] and Tai and Wang (2009) [13]] are incorrect since the considered variation of constant formulas is not appropriate. In this note, we also consider a different approach to treat a general class of abstract fractional differential equations.  相似文献   

6.
We provide two types of semilocal convergence theorems for approximating a solution of an equation in a Banach space setting using an inexact Newton method [I.K. Argyros, Relation between forcing sequences and inexact Newton iterates in Banach spaces, Computing 63 (2) (1999) 134–144; I.K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Fréchet-derivative, Comput. Appl. Math. 37 (7) (1999) 109–115; I.K. Argyros, Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77–80; I.K. Argyros, Local convergence of inexact Newton-like iterative methods and applications, Comput. Math. Appl. 39 (2000) 69–75; I.K. Argyros, Computational Theory of Iterative Methods, in: C.K. Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242]. By using more precise majorizing sequences than before [X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242; Z.D. Huang, On the convergence of inexact Newton method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393–396; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; X.H. Wang, Convergence on the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552–555; T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3) (1984) 583–590], we provide (under the same computational cost) under the same or weaker hypotheses: finer error bounds on the distances involved; an at least as precise information on the location of the solution. Moreover if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained.  相似文献   

7.
We present a new semilocal convergence analysis for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis is based on the weaker center-Lipschitz concept instead of the stronger Lipschitz condition which has been ubiquitously employed in other studies such as Amat et al. (2004)  [2], Bosarge and Falb (1969)  [9], Dennis (1971)  [10], Ezquerro et al. (2010)  [11], Hernández et al. (2005, 2000)   and , Kantorovich and Akilov (1982)  [14], Laasonen (1969)  [15], Ortega and Rheinboldt (1970)  [16], Parida and Gupta (2007)  [17], Potra (1982, 1984–1985, 1985)  ,  and , Proinov (2009, 2010)   and , Schmidt (1978) [23], Wolfe (1978)  [24] and Yamamoto (1987)  [25] for computing the inverses of the linear operators. We also provide lower and upper bounds on the limit point of the majorizing sequences for the Secant method. Under the same computational cost, our error analysis is tighter than that proposed in earlier studies. Numerical examples illustrating the theoretical results are also given in this study.  相似文献   

8.
The classical existence-and-uniqueness theorem of the solution to a stochastic differential delay equation (SDDE) requires the local Lipschitz condition and the linear growth condition (see e.g. [11], [12] and [20]). The numerical solutions under these conditions have also been discussed intensively (see e.g. [4], [10], [13], [16], [17], [18], [21], [22] and [24]). Recently, Mao and Rassias [14] and [15] established the generalized Khasminskii-type existence-and-uniqueness theorems for SDDEs, where the linear growth condition is no longer imposed. These generalized Khasminskii-type theorems cover a wide class of highly nonlinear SDDEs but these nonlinear SDDEs do not have explicit solutions, whence numerical solutions are required in practice. However, there is so far little numerical theory on SDDEs under these generalized Khasminskii-type conditions. The key aim of this paper is to close this gap.  相似文献   

9.
We provide a semilocal convergence analysis for Newton-like methods using the ωω-versions of the famous Newton–Kantorovich theorem (Argyros (2004) [1], Argyros (2007) [3], Kantorovich and Akilov (1982) [13]). In the special case of Newton’s method, our results have the following advantages over the corresponding ones (Ezquerro and Hernaández (2002) [10], Proinov (2010) [17]) under the same information and computational cost: finer error estimates on the distances involved; at least as precise information on the location of the solution, and weaker sufficient convergence conditions.  相似文献   

10.
Let X be a complete CAT(0) space, T be a generalized multivalued nonexpansive mapping, and t be a single valued quasi-nonexpansive mapping. Under the assumption that T and t commute weakly, we shall prove the existence of a common fixed point for them. In this way, we extend and improve a number of recent results obtained by Shahzad (2009) [7] and [12], Shahzad and Markin (2008) [6], and Dhompongsa et al. (2005) [5].  相似文献   

11.
In this paper, on the basis of some recent works of Fan, Jiang and Jia, we establish a representation theorem in the space of processes for generators of BSDEs with continuous linear-growth generators, which generalizes the corresponding results in Fan (2006, 2007) [10] and [11] and Fan and Hu (2008) [9].  相似文献   

12.
In this paper, we provide a comprehensive study of coderivative formulas for normal cone mappings. This allows us to derive necessary and sufficient conditions for the Lipschitzian stability of parametric variational inequalities in reflexive Banach spaces. Our development not only gives an answer to the open questions raised in Yao and Yen (2009) [11], but also establishes generalizations and complements of the results given in Henrion et al. (2010) [4] and Yao and Yen (2009) [11] and [12].  相似文献   

13.
14.
Newton’s method is often used for solving nonlinear equations. In this paper, we show that Newton’s method converges under weaker convergence criteria than those given in earlier studies, such as Argyros (2004) [2, p. 387], Argyros and Hilout (2010)[11, p. 12], Argyros et al. (2011) [12, p. 26], Ortega and Rheinboldt (1970) [26, p. 421], Potra and Pták (1984) [36, p. 22]. These new results are illustrated by several numerical examples, for which the older convergence criteria do not hold but for which our weaker convergence criteria are satisfied.  相似文献   

15.
We define a logic D capable of expressing dependence of a variable on designated variables only. Thus D has similar goals to the Henkin quantifiers of [4] and the independence friendly logic of [6] that it much resembles. The logic D achieves these goals by realizing the desired dependence declarations of variables on the level of atomic formulas. By [3] and [17], ability to limit dependence relations between variables leads to existential second order expressive power. Our D avoids some difficulties arising in the original independence friendly logic from coupling the dependence declarations with existential quantifiers. As is the case with independence friendly logic, truth of D is definable inside D. We give such a definition for D in the spirit of [11] and [2] and [1].  相似文献   

16.
For a general class of lower semicontinuous functionals, we prove existence and multiplicity of critical points, which turn out to be unbounded solutions to the associated Euler equation. We apply a nonsmooth critical point theory developed in [10], [12] and [13] and applied in [8], [9] and [20] to treat the case of continuous functionals.  相似文献   

17.
In this paper, we introduce a condition on multivalued mappings which is a multivalued version of condition (Cλ) defined by Garcia-Falset et al. (2011) [3]. It is shown here that some of the classical fixed point theorems for multivalued nonexpansive mappings can be extended to mappings satisfying this condition. Our results generalize the results in Lim (1974), Lami Dozo (1973), Kirk and Massa (1990), Garcia-Falset et al. (2011), Dhompongsa et al. (2009) and Abkar and Eslamian (2010) [4], [5], [6], [3], [7] and [8] and many others.  相似文献   

18.
We address differential equations with piecewise constant argument of generalized type [5], [6], [7] and [8] and investigate their stability with the second Lyapunov method. Despite the fact that these equations include delay, stability conditions are merely given in terms of Lyapunov functions; that is, no functionals are used. Several examples, one of which considers the logistic equation, are discussed to illustrate the development of the theory. Some of the results were announced at the 14th International Congress on Computational and Applied Mathematics (ICCAM2009), Antalya, Turkey, in 2009.  相似文献   

19.
In this paper, we prove some decay properties of global solutions for the Navier-Stokes equations in an exterior domain ΩRn, n=2,3.When a domain has a boundary, the pressure term is troublesome since we do not have enough information on the pressure near the boundary. To overcome this difficulty, by multiplying a special form of test functions, we obtain an integral equation. He-Xin (2000) [12] first introduced this method and then Bae-Jin (2006, 2007) [1] and [13] modified their method to obtain better decay rates. Also, Bae-Roh (2009) [11] improved Bae-Jin’s results. Unfortunately, their results were not optimal, because there exists an unpleasant positive small δ in their rates.In this paper, we obtain the following optimal rate without δ,
  相似文献   

20.
The hybrid method in mathematical programming was introduced by Haugazeau (1968) [1] and he proved a strong convergence theorem for finding a common element of finite nonempty closed convex subsets of a real Hilbert space. Later, Bauschke and Combettes (2001) [2] proposed some condition for a family of mappings (the so-called coherent condition) and established interesting results by the hybrid method. The authors (Nakajo et al., 2009) [10] extended Bauschke and Combettes’s results. In this paper, we introduce a condition weaker than the coherent condition and prove strong convergence theorems which generalize the results of Nakajo et al. (2009) [10]. And we get strong convergence theorems for a family of asymptotically κ-strict pseudo-contractions, a family of Lipschitz and pseudo-contractive mappings and a one-parameter uniformly Lipschitz semigroup of pseudo-contractive mappings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号