首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of eighth-order iterative methods for the solution of nonlinear equations is presented. The new family of eighth-order methods is based on King’s fourth-order methods and the family of sixth-order iteration methods developed by Chun et al. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative. Therefore this family of methods has the efficiency index which equals 1.682. Kung and Traub conjectured that a multipoint iteration without memory based on nn evaluations could achieve optimal convergence order 2n−12n1. Thus we provide a new example which agrees with the conjecture of Kung–Traub for n=4n=4. Numerical comparisons are made to show the performance of the presented methods.  相似文献   

2.
Direct substitution xk+1=g(xk)xk+1=g(xk) generally represents iterative techniques for locating a root z   of a nonlinear equation f(x)f(x). At the solution, f(z)=0f(z)=0 and g(z)=zg(z)=z. Efforts continue worldwide both to improve old iterators and create new ones. This is a study of convergence acceleration by generating secondary solvers through the transformation gm(x)=(g(x)-m(x)x)/(1-m(x))gm(x)=(g(x)-m(x)x)/(1-m(x)) or, equivalently, through partial substitution gmps(x)=x+G(x)(g-x)gmps(x)=x+G(x)(g-x), G(x)=1/(1-m(x))G(x)=1/(1-m(x)). As a matter of fact, gm(x)≡gmps(x)gm(x)gmps(x) is the point of intersection of a linearised g   with the g=xg=x line. Aitken's and Wegstein's accelerators are special cases of gmgm. Simple geometry suggests that m(x)=(g(x)+g(z))/2m(x)=(g(x)+g(z))/2 is a good approximation for the ideal slope of the linearised g  . Indeed, this renders a third-order gmgm. The pertinent asymptotic error constant has been determined. The theoretical background covers a critical review of several partial substitution variants of the well-known Newton's method, including third-order Halley's and Chebyshev's solvers. The new technique is illustrated using first-, second-, and third-order primaries. A flexible algorithm is added to facilitate applications to any solver. The transformed Newton's method is identical to Halley's. The use of m(x)=(g(x)+g(z))/2m(x)=(g(x)+g(z))/2 thus obviates the requirement for the second derivative of f(x)f(x). Comparison and combination with Halley's and Chebyshev's solvers are provided. Numerical results are from the square root and cube root examples.  相似文献   

3.
In this paper, the quadratic Riccati differential equation is solved by He's variational iteration method with considering Adomian's polynomials. Comparisons were made between Adomian's decomposition method (ADM), homotopy perturbation method (HPM) and the exact solution. In this application, we do not have secular terms, and if λλ, Lagrange multiplier, is equal -1-1 then the Adomian's decomposition method is obtained. The results reveal that the proposed method is very effective and simple and can be applied for other nonlinear problems.  相似文献   

4.
A biparametric family of four-step multipoint iterative methods of order sixteen to numerically solve nonlinear equations are developed and their convergence properties are investigated. The efficiency indices of these methods are all found to be 161/5≈1.741101, being optimally consistent with the conjecture of Kung-Traub. Numerical examples as well as comparison with existing methods developed by Kung-Traub and Neta are demonstrated to confirm the developed theory in this paper.  相似文献   

5.
We extend to nn-dimensional case a known multi-point family of iterative methods for solving nonlinear equations. This family includes as particular cases some well known and also some new methods. The main advantage of these methods is they have order three or four and they do not require the evaluation of any second or higher order Fréchet derivatives. A local convergence analysis and numerical examples are provided.  相似文献   

6.
In this paper, we present a simple, and yet powerful and easily applicable scheme in constructing the Newton-like iteration formulae for the computation of the solutions of nonlinear equations. The new scheme is based on the homotopy analysis method applied to equations in general form equivalent to the nonlinear equations. It provides a tool to develop new Newton-like iteration methods or to improve the existing iteration methods which contains the well-known Newton iteration formula in logic; those all improve the Newton method. The orders of convergence and corresponding error equations of the obtained iteration formulae are derived analytically or with the help of Maple. Some numerical tests are given to support the theory developed in this paper.  相似文献   

7.
From the ideas of improving the speed of convergence and reducing the computational cost of one-point iterations, a new uniparametric family of multipoint iterations is constructed in Banach spaces to solve nonlinear equations. The semilocal convergence and the RR-order of convergence of the new iterations are analyzed and numerical tests are also given.  相似文献   

8.
In this paper we consider constructing some higher-order modifications of Newton’s method for solving nonlinear equations which increase the order of convergence of existing iterative methods by one or two or three units. This construction can be applied to any iteration formula, and per iteration the resulting methods add only one additional function evaluation to increase the order. Some illustrative examples are provided and several numerical results are given to show the performance of the presented methods.  相似文献   

9.
We show that the theorems of Sanz-Serna and Eirola and Sanz-Serna concerning the symplecticity of Runge-Kutta and Linear Multistep methods, respectively, follow from the fact that these methods preserve quadratic integral invariants and are closed under differentiation and restriction to closed subsystems.  相似文献   

10.
In this paper, we present a simple and easily applicable approach to construct some third-order modifications of Newton's method for solving nonlinear equations. It is shown by way of illustration that existing third-order methods can be employed to construct new third-order iterative methods. The proposed approach is applied to the classical Chebyshev–Halley methods to derive their second-derivative-free variants. Numerical examples are given to support that the methods thus obtained can compete with known third-order methods.  相似文献   

11.
Schröder’s methods of the first and second kind for solving a nonlinear equation f(x)=0, originally derived in 1870, are of great importance in the theory and practice of iteration processes. They were rediscovered several times and expressed in different forms during the last 130 years. It was proved in the paper of Petkovi? and Herceg (1999) [7] that even seven families of iteration methods for solving nonlinear equations are mutually equivalent. In this paper we show that these families are also equivalent to another four families of iteration methods and find that all of them have the origin in Schröder’s generalized method (of the second kind) presented in 1870. In the continuation we consider Smale’s open problem from 1994 about possible link between Schröder’s methods of the first and second kind and state the link in a simple way.  相似文献   

12.
The general centered form for multi-variate polynomials is investigated and a computing procedure is proposed that results in a certain superset. Based on this procedure the optimal centered forms for monomials and for some special cases of polynomials are investigated.  相似文献   

13.
Summary Using the argument principle higher order methods for simultaneous computation of all zeros of generalized polynomials (like algebraic, trigonometric and exponential polynomials or exponential sums) are derived. The methods can also be derived following the continuation principle from [3]. Thereby, the unified approach of [7] is enlarged to arbitrary orderN. The local convergence as well as a-priori and a-posteriori error estimates for these methods are treated on a general level. Numerical examples are included.  相似文献   

14.
Summary By the argument principle the number of zeros inside of the unit circle of a real polynomial , can be estimated by the variation of the argument ofp n (exp(it)) ift varies from 0 to . This variation has its maximal value n iff then distinct zeros of are separated by then–1 distinct zeros of . Now from Sturm sequence techniques in connection with special properties of the Chebyshev polynomials there results a very simple stability test.Dedicated to Professor Dr. Wilhelm Niethammer on his sixtieth birthday (December 2, 1993)  相似文献   

15.
An iterative method for finding a solution of the equation f(x)=0f(x)=0 is presented. The method is based on some specially derived quadrature rules. It is shown that the method can give better results than the Newton method.  相似文献   

16.
Two modifications of Newton’s method to accelerate the convergence of the nnth root computation of a strictly positive real number are revisited. Both modifications lead to methods with prefixed order of convergence p∈N,p≥2pN,p2. We consider affine combinations of the two modified ppth-order methods which lead to a family of methods of order pp with arbitrarily small asymptotic constants. Moreover the methods are of order p+1p+1 for some specific values of a parameter. Then we consider affine combinations of the three methods of order p+1p+1 to get methods of order p+1p+1 again with arbitrarily small asymptotic constants. The methods can be of order p+2p+2 with arbitrarily small asymptotic constants, and also of order p+3p+3 for some specific values of the parameters of the affine combination. It is shown that infinitely many ppth-order methods exist for the nnth root computation of a strictly positive real number for any p≥3p3.  相似文献   

17.
For large sparse saddle point problems, Chen and Jiang recently studied a class of generalized inexact parameterized iterative methods (see [F. Chen, Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput. 206 (2008) 765-771]). In this paper, the methods are modified and some choices of preconditioning matrices are given. These preconditioning matrices have advantages in solving large sparse linear system. Numerical experiments of a model Stokes problem are presented.  相似文献   

18.
For evaluation schemes based on the Lagrangian form of a polynomial with degreen, a rigorous error analysis is performed, taking into account that data, computation and even the nodes of interpolation might be perturbed by round-off. The error norm of the scheme is betweenn 2 andn 2+(3n+7) n , where n denotes the Lebesgue constant belonging to the nodes. Hence, the error norm is of least possible orderO(n 2) if, for instance, the nodes are chosen to be the Chebyshev points or the Fekete points.  相似文献   

19.
Using two different elementary approaches we derive a global and a local perturbation theorem on polynomial zeros that significantly improve the results of Ostrowski (Acta Math 72:99–257, 1940), Elsner et al. (Linear Algebra Appl 142:195–209, 1990). A comparison of different perturbation bounds shows that our results are better in many cases than the similar local result of Beauzamy (Can Math Bull 42(1):3–12, 1999). Using the matrix theoretical approach we also improve the backward stability result of Edelman and Murakami (Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, SIAM, Philapdelphia, 1994; Math Comput 64:210–763, 1995).  相似文献   

20.
When we choose an iterative process for solving a nonlinear equation, the region of accessibility of the iterative process is certainly useful. We know that the higher the order of convergence of the iterative process, the smaller the region of accessibility. In this paper, we present a simple modification of the classic third-order iterative processes, so as to consider, for each of them, the same region of accessibility as that of the Newton method, that is to say a method of order of convergence two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号