首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate numerical computation of complex flows on a single grid requires very fine meshes to capture phenomena occurring at both large and small scales. The use of adaptive mesh refinement (AMR) methods, significantly reduces the involved computational time and memory. In the present article, a hybrid linking approach for solving the conservation equations with an AMR method is proposed. This method is essentially a coupling between the h-AMR and the multigrid methods. The efficiency of the present approach has been demonstrated by solving species and Navier–Stokes equations.  相似文献   

2.
Front tracking in combination with dimensional splitting is analyzed as a numerical method for scalar conservation laws in two space dimensions. An analytic error bound is derived, and convergence rates based on numerical experiments are presented. Numerical experiments indicate that large CFL numbers can be used without loss of accuracy for a wide range of problems. A new method for grid refinement is introduced. The method easily allows for dynamical changes in the grid, using, for instance, the total variation in each grid cell as a criterion for introducing new or removing existing refinements. Several numerical examples are included, highlighting the features of the numerical method. A comparison with a high-resolution method confirms that dimensional splitting with front tracking is a highly viable numerical method for practical computations. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 627–648, 1998  相似文献   

3.
An adaptive finite difference method for singularly perturbed convection‐diffusion problems is presented. The method is introduced using a first‐order upwind scheme and a suitable error estimator based on the first derivatives. To obtain the grid structure needed for the cross stencil a special refinement strategy is considered. To avoid the slave points we change the stencil at the interface points from a cross to a skew one. After the convergence of the refinement algorithm we use a combination of a first order upwind and a second order central schemes to achieve higher order of convergence. Several numerical examples show the efficiency of our treatment. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A parallel adaptive grid algorithm for computational shock hydrodynamics   总被引:1,自引:0,他引:1  
Adaptive Mesh Refinement (AMR) algorithms that dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate physical scales. In particular several workers have demonstrated the effectiveness of employing an adaptive, hierarchical block-structured grid system for time-accurate simulations of complex shock wave phenomena. Here we present an overview of one such block-structured AMR algorithm. Our formulation has progressed far beyond the development stage to become a reliable numerical tool for performing detailed investigations of complex flows. While our refinement machinery is not tied to a specific application and is intended for general use, in this paper we adopt detonation phenomena as a theme so as to provide a sense of purpose.  相似文献   

5.
A discontinuous Galerkin scheme was implemented in the DUNE framework to solve the compressible, inviscid Euler equations in a multi-dimensional Cartesian grid. It uses a HLLC Riemann solver for the numerical fluxes in the interfaces, a total variation bounded limiter to handle discontinuities, a positivity preserving limiter for near vacuum conditions, and adaptive mesh refinement (AMR). (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Summary. We generalise and apply a refinement indicator of the type originally designed by Mackenzie, Süli and Warnecke in [15] and [16] for linear Friedrichs systems to the Euler equations of inviscid, compressible fluid flow. The Euler equations are symmetrized by means of entropy variables and locally linearized about a constant state to obtain a symmetric hyperbolic system to which an a posteriori error analysis of the type introduced in [15] can be applied. We discuss the details of the implementation of the refinement indicator into the DLR--Code which is based on a finite volume method of box type on an unstructured grid and present numerical results. Received May 15, 1995 / Revised version received April 17, 1996  相似文献   

7.
In this paper, we propose an anisotropic adaptive refinement algorithm based on the finite element methods for the numerical solution of partial differential equations. In 2-D, for a given triangular grid and finite element approximating space V, we obtain information on location and direction of refinement by estimating the reduction of the error if a single degree of freedom is added to V. For our model problem the algorithm fits highly stretched triangles along an interior layer, reducing the number of degrees of freedom that a standard h-type isotropic refinement algorithm would use.  相似文献   

8.
It is well known that the FGMRES algorithm can be used as an alternative to iterative refinement and, in some instances, is successful in computing a backward stable solution when iterative refinement fails to converge. In this study, we analyse how variants of the Chebyshev algorithm can also be used to accelerate iterative refinement without loss of numerical stability and at a computational cost at each iteration that is less than that of FGMRES and only marginally greater than that of iterative refinement. A component-wise error analysis of the procedure is presented and numerical tests on selected sparse test problems are used to corroborate the theory.  相似文献   

9.
A method for the solution of the Navier–Stokes equation for the prediction of flows inside domains of arbitrary shaped bounds by the use of Cartesian grids with block-refinement in space is presented. In order to avoid the complexity of the body fitted numerical grid generation procedure, we use a saw tooth method for the curvilinear geometry approximation. By using block-nested refinement, we achieved the desired geometry Cartesian approximation in order to find an accurate solution of the N–S equations. The method is applied to incompressible laminar flows and is based on a cell-centred approximation. We present the numerical simulation of the flow field for two geometries, driven cavity and stenosed tubes. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single grid algorithm. The Cartesian block refinement algorithm can be used in any complex curvilinear geometry simulation, to accomplish a reduction in memory requirements and the computational time effort.  相似文献   

10.
We present a deterministic scheme for the discrete Smoluchowski's coagulation equation based on a binary grid refinement. Starting from the binary grid Ω0={1,2,4,8,16,. . .}, we first introduce an appropriate grid refinement by adding at each level 2l grid points in every binary subsection of the grid Ωl. In a next step we derive an approximate equation for the dynamic behavior on each level Ωl based on a piecewise constant approximation of the right hand side of Smoluchowski's equation. Numerical results show that the computational effort can be drastically decreased compared to the corresponding complete integer grid. When considering unbounded kernels in Smoluchowski's equation we use an adaptive time step method to overcome numerical instabilities which may occur at the tails of the density function.  相似文献   

11.
Advection-dominated flows occur widely in the transport of groundwater contaminants, the movements of fluids in enhanced oil recovery projects, and many other contexts. In numerical models of such flows, adaptive local grid refinement is a conceptually attractive approach for resolving the sharp fronts or layers that tend to characterize the solutions. However, this approach can be difficult to implement in practice. A domain decomposition method developed by Bramble, Ewing, Pasciak, and Schatz, known as the BEPS method, overcomes many of the difficulties. We demonstrate the applicability of BEPS ideas to finite element collocation on trial spaces of piecewise Hermite cubics. The resulting scheme allows one to refine selected parts of a spatial grid without destroying algebraic efficiencies associated with the original coarse grid. We apply the method to steady-state problems with boundary and interior layers and a time-dependent advection-diffusion problem.  相似文献   

12.
An adaptive numerical scheme is developed for the propagation of an interface in a velocity field based on the fast interface tracking method proposed in [2]. A multiresolution stategy to represent the interface instead of point values, allows local grid refinement while controlling the approximation error on the interface. For time integration, we use an explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes longer time steps for finer spatial scales. The implementation of the algorithm uses a dynamic tree data structure to represent data in the computer memory. We briefly review first the main algorithm, describe the essential data structures, highlight the adaptive scheme, and illustrate the computational efficiency by some numerical examples.  相似文献   

13.
Summary. Besides an algorithm for local refinement, an a posteriori error estimator is the basic tool of every adaptive finite element method. Using information generated by such an error estimator the refinement of the grid is controlled. For 2nd order elliptic problems we present an error estimator for anisotropically refined grids, like -d cuboidal and 3-d prismatic grids, that gives correct information about the size of the error; additionally it generates information about the direction into which some element has to be refined to reduce the error in a proper way. Numerical examples are presented for 2-d rectangular and 3-d prismatic grids. Received March 15, 1994 / Revised version received June 3, 1994  相似文献   

14.
We show that two desirable properties for planar mesh refinement techniques are incompatible. Mesh refinement is a common technique for adaptive error control in generating unstructured planar triangular meshes for piecewise polynomial representations of data. Local refinements are modifications of the mesh that involve a fixed maximum amount of computation, independent of the number of triangles in the mesh. Regular meshes are meshes for which every interior vertex has degree 6. At least for some simple model meshing problems, optimal meshes are known to be regular, hence it would be desirable to have a refinement technique that, if applied to a regular mesh, produced a larger regular mesh. We call such a technique a regular refinement. In this paper, we prove that no refinement technique can be both local and regular. Our results also have implications for non-local refinement techniques such as Delaunay insertion or Rivara's refinement. Received August 1, 1996 / Revised version received February 28, 1997  相似文献   

15.
In this article, we consider two‐grid finite element methods for solving semilinear interface problems in d space dimensions, for d = 2 or d = 3. We consider semilinear problems with discontinuous diffusion coefficients, which includes problems containing subcritical, critical, and supercritical nonlinearities. We establish basic quasioptimal a priori error estimates for Galerkin approximations. We then design a two‐grid algorithm consisting of a coarse grid solver for the original nonlinear problem, and a fine grid solver for a linearized problem. We analyze the quality of approximations generated by the algorithm and show that the coarse grid may be taken to have much larger elements than the fine grid, and yet one can still obtain approximation quality that is asymptotically as good as solving the original nonlinear problem on the fine mesh. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
Codes for the numerical solution of two-point boundary value problems can now handle quite general problems in a fairly routine and reliable manner. When faced with particularly challenging equations, such as singular perturbation problems, the most efficient codes use a highly non-uniform grid in order to resolve the non-smooth parts of the solution trajectory. This grid is usually constructed using either a pointwise local error estimate defined at the grid points or else by using a local residual control. Similar error estimates are used to decide whether or not to accept a solution. Such an approach is very effective in general providing that the problem to be solved is well conditioned. However, if the problem is ill conditioned then such grid refinement algorithms may be inefficient because many iterations may be required to reach a suitable mesh on which to compute the solution. Even worse, for ill conditioned problems an inaccurate solution may be accepted even though the local error estimates may be perfectly satisfactory in that they are less than a prescribed tolerance. The primary reason for this is, of course, that for ill conditioned problems a small local error at each grid point may not produce a correspondingly small global error in the solution. In view of this it could be argued that, when solving a two-point boundary value problem in cases where we have no idea of its conditioning, we should provide an estimate of the condition number of the problem as well as the numerical solution. In this paper we consider some algorithms for estimating the condition number of boundary value problems and show how this estimate can be used in the grid refinement algorithm.  相似文献   

17.
We consider semi-infinite linear minimization problems and prove a refinement of an optimality condition proved earlier by the author. This refinement is used to derive a sufficient condition for strong uniqueness of a minimal point. As an application, we show that these strongly unique minimal points depend (pointwise) Lipschitz-continuously on the parameter of the minimization problem. Finally, we consider numerical algorithms for semi-infinite optimization problems and we apply the above results to derive error estimates for these algorithms.  相似文献   

18.
In this paper, the three-dimensional automatic adaptive mesh refinement is presented in modeling the crack propagation based on the modified superconvergent patch recovery technique. The technique is developed for the mixed mode fracture analysis of different fracture specimens. The stress intensity factors are calculated at the crack tip region and the crack propagation is determined by applying a proper crack growth criterion. An automatic adaptive mesh refinement is employed on the basis of modified superconvergent patch recovery (MSPR) technique to simulate the crack growth by applying the asymptotic crack tip solution and using the collapsed quarter-point singular tetrahedral elements at the crack tip region. A-posteriori error estimator is used based on the Zienkiewicz–Zhu method to estimate the error of fracture parameters and predict the crack path pattern. Finally, the efficiency and accuracy of proposed computational algorithm is demonstrated by several numerical examples.  相似文献   

19.
In this paper we present an adaptive discretization technique for solving elliptic partial differential equations via a collocation radial basis function partition of unity method. In particular, we propose a new adaptive scheme based on the construction of an error indicator and a refinement algorithm, which used together turn out to be ad-hoc strategies within this framework. The performance of the adaptive meshless refinement scheme is assessed by numerical tests.  相似文献   

20.
Difference-like schemes for the wave equation arise naturally from a Galerkin finite-element formulation, if we adopt certain quadrature rules in evaluating the mass and stiffness matrices. One can extend these schemes to problems involving sharp interfaces by applying the quadrature on a refinement of the finite-element grid that includes the interfaces. We develop error estimates for this modified scheme that corroborate numerical results for acoustic and elastic wave equations, presented in a companion article. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号