首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fishways are the main type of hydraulic devices currently used to facilitate migration of fish past obstructions (dams, waterfalls, rapids,…rapids,) in rivers. In this paper we present a mathematical formulation of an optimal control problem related to the optimal management of a vertical slot fishway, where the state system is given by the shallow water equations, the control is the flux of inflow water, and the cost function reflects the need of rest areas for fish and of a water velocity suitable for fish leaping and swimming capabilities. We give a first-order optimality condition for characterizing the optimal solutions of this problem. From a numerical point of view, we use a characteristic-Galerkin method for solving the shallow water equations, and we use an optimization algorithm for the computation of the optimal control. Finally, we present numerical results obtained for the realistic case of a standard nine pools fishway.  相似文献   

2.
We study the stability of some critical (or equilibrium) shapes in the minimization problem of the energy dissipated by a fluid (i.e. the drag minimization problem) governed by the Stokes equations. We first compute the shape derivative up to the second order, then provide a sufficient condition for the shape Hessian of the energy functional to be coercive at a critical shape. Under this condition, the existence of such a local strict minimum is then proved using a precise upper bound for the variations of the second order shape derivative of the functional with respect to the coercivity and differentiability norms. Finally, for smooth domains, a lower bound of the variations of the drag is obtained in terms of the measure of the symmetric difference of domains.  相似文献   

3.
We consider control problems with a general cost functional where the state equations are the stationary, incompressible Navier-Stokes equations with shear-dependent viscosity. The equations are quasi-linear. The control function is given as the inhomogeneity of the momentum equation. In this paper, we study a general class of viscosity functions which correspond to shear-thinning or shear-thickening behavior. The basic results concerning existence, uniqueness, boundedness, and regularity of the solutions of the state equations are reviewed. The main topic of the paper is the proof of Gâteaux differentiability, which extends known results. It is shown that the derivative is the unique solution to a linearized equation. Moreover, necessary first-order optimality conditions are stated, and the existence of a solution of a class of control problems is shown.  相似文献   

4.
In this paper we derive the first and second variations for a nonlinear time scale optimal control problem with control and state-endpoints equality constraints. Using the first variation, a first order necessary condition for weak local optimality is obtained under the form of a weak maximum principle generalizing the Dubois–Reymond Lemma to the optimal control setting and time scales. A second order necessary condition in terms of the accessory problem is derived by using the nonnegativity of the second variation at all admissible directions. The control problem is studied under a controllability assumption, and with or without the shift in the state variable. These two forms of the problem are shown to be equivalent.  相似文献   

5.
Optimal control for a system consistent of the viscosity dependent Stokes equations coupled with a transport equation for the viscosity is studied. Motivated by a lack of sufficient regularity of the adjoint equations, artificial diffusion is introduced to the transport equation. The asymptotic behavior of the regularized system is investigated. Optimality conditions for the regularized optimal control problems are obtained and again the asymptotic behavior is analyzed. The lack of uniqueness of solutions to the underlying system is another source of difficulties for the problem under investigation.  相似文献   

6.
This paper is concerned with exponential stability of solutions of perturbed discrete equations. For a given m>1 we will provide necessary and sufficient conditions for exponential stability of all perturbed systems with perturbation of order m under the assumption that the unperturbed linear system is exponentially stable. Basing on this result we obtained necessary and sufficient conditions for exponential stability of the perturbed system for all perturbations of order m>1 for regular systems. Our results are expressed in terms of regular coefficients of the unperturbed system.  相似文献   

7.
The purpose of this paper is to propose and study a mathematical model and a boundary control problem associated to the miscible displacement of hydrogen through the porous anode of a PEM fuel cell. Throughout the paper, we study certain variational problems with a priori regularity properties of the weak solutions. We obtain the existence of less regular solutions and then we prove the desired regularity of these solutions. We consider a control problem that permits to determine the boundary distribution of the pressure which provides an optimal configuration for the temperature and for the concentration, as well. Since the solution of the problem is not unique, the control variable does not appear explicitly in the definition of our cost functional. To overcome this difficulty, we introduce a family of penalized control problems which approximates our boundary control problem. The necessary conditions of optimality are derived by passing to the limit in the penalized optimality conditions.  相似文献   

8.
We consider the fast and efficient numerical solution of linear-quadratic optimal control problems with additional constraints on the control. Discretization of the first-order conditions leads to an indefinite linear system of saddle point type with additional complementarity conditions due to the control constraints. The complementarity conditions are treated by a primal-dual active set strategy that serves as outer iteration. At each iteration step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solution. To this end, we use a smoother which is based on an inexact constraint preconditioner.We present numerical results which show that the proposed multigrid method possesses convergence rates of the same order as for the underlying (elliptic) PDE problem. Furthermore, when combined with a nested iteration, the solver is of optimal complexity and achieves the solution of the optimization problem at only a small multiple of the cost for the PDE solution.  相似文献   

9.
In this paper, we study a scalar conservation law that models a highly re-entrant manufacturing system as encountered in semi-conductor production. As a generalization of Coron et al. (2010) [14], the velocity function possesses both the local and nonlocal character. We prove the existence and uniqueness of the weak solution to the Cauchy problem with initial and boundary data in L. We also obtain the stability (continuous dependence) of both the solution and the out-flux with respect to the initial and boundary data. Finally, we prove the existence of an optimal control that minimizes, in the Lp-sense with 1?p?∞, the difference between the actual out-flux and a forecast demand over a fixed time period.  相似文献   

10.
We obtain a linear programming characterization for the minimum cost associated with finite dimensional reflected optimal control problems. In order to describe the value functions, we employ an infinite dimensional dual formulation instead of using the characterization via Hamilton-Jacobi partial differential equations. In this paper we consider control problems with both infinite and finite horizons. The reflection is given by the normal cone to a proximal retract set.  相似文献   

11.
This paper is concerned with an optimal control problem related to the determination of an optimal profile for the steam temperature into the autoclave along the processing of canned foods. The problem studies a system coupling the evolution Navier-Stokes equations with the heat transfer equation by natural convection (the so-called Boussinesq equations), and with the microorganisms removal equation. The essential difficulties in the study of this multistate control problem arise from the lack of uniqueness for the solution of the state system. Here we obtain—after a careful analysis of the problem mathematical formulation—the uniqueness of part of the state, and the existence of optimal solutions.  相似文献   

12.
We consider the feedback stabilization of a simplified 1d model for a fluid–structure interaction system. The fluid equation is the viscous Burgers equation whereas the motion of the particle is given by the Newton's laws. We stabilize this system around a stationary state by using feedbacks located at the exterior boundary of the fluid domain. With one input, we obtain a local stabilizability of the system with an exponential decay rate of order σ<σ0σ<σ0. An arbitrary order for the exponential decay rate can be proved if a unique continuation result holds true or if two inputs are used to stabilize the system. Our method is based on general arguments for stabilization of nonlinear parabolic systems combined with a change of variables to handle the fact that the fluid domains of the stationary state and of the stabilized solution are different.  相似文献   

13.
Operative planning in gas distribution networks leads to large-scale mixed-integer optimization problems involving a hyperbolic PDE defined on a graph. We consider the NLP obtained under prescribed combinatorial decisions—or as relaxation in a branch-and-bound framework, addressing in particular the KKT systems arising in primal–dual interior methods. We propose a custom solution algorithm using sparse projections locally in time, based on the KKT systems’ structural properties in space as induced by the discretized gas flow equations in combination with the underlying network topology. The numerical efficiency and accuracy of the algorithm are investigated, and detailed computational comparisons with a previously developed control space method and with the multifrontal solver MA27 are provided.  相似文献   

14.
This paper presents a nonlinear, multi-phase and stochastic dynamical system according to engineering background. We show that the stochastic dynamical system exists a unique solution for every initial state. A stochastic optimal control model is constructed and the sufficient and necessary conditions for optimality are proved via dynamic programming principle. This model can be converted into a parametric nonlinear stochastic programming by integrating the state equation. It is discussed here that the local optimal solution depends in a continuous way on the parameters. A revised Hooke–Jeeves algorithm based on this property has been developed. Computer simulation is used for this paper, and the numerical results illustrate the validity and efficiency of the algorithm.  相似文献   

15.
This paper concerns a class of control systems governed by semilinear degenerate equations with boundary control in one-dimensional space. The control is proposed on the ‘degenerate’ part of the boundary. The control systems are shown to be approximately controllable by Kakutani's fixed point theorem.  相似文献   

16.
We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given ψ0 close enough to an eigenstate and ψf close enough to another eigenstate, the wave function can be moved exactly from ψ0 to ψf in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash-Moser implicit function theorem, the return method and expansion to the second order.  相似文献   

17.
This paper considers the problem of positive real control for two-dimensional (2-D) discrete delayed systems in the Fornasini–Marchesini second local state-space model. Attention is focused on the design of dynamic output feedback controllers, which guarantee that the closed-loop system is asymptotically stable and the closed-loop transfer function is extended strictly positive real. We first present a sufficient condition for extended strictly positive realness of 2-D discrete delayed systems. Based on this, a sufficient condition for the solvability of the positive real control problem is obtained in terms of a linear matrix inequality (LMI). When the LMI is feasible, an explicit parametrization of a desired output feedback controller is presented. Finally, we provide a numerical example to demonstrate the application of the proposed method.  相似文献   

18.
The Linear-Quadratic optimal control problem with a partial stabilization constraint (LQPS) is considered for exponentially stabilizable infinite dimensional semigroup state-space systems with bounded sensing and control (having their transfer function with entries in the algebra . It is reported that the LQPS-optimal state-feedback operator is related to a nonnegative self-adjoint solution of an operator Riccati equation and it can be identified (1) by solving a spectral factorization problem delivering a bistable spectral factor with entries in the distributed proper-stable transfer function algebra _, and (2) by obtaining any constant solution of a diophantine equation over _. These theoretical results are applied to a simple model of heat diffusion, leading to an approximation procedure converging exponentially fast to the LQPS-optimal state feedback operator.  相似文献   

19.
The aim of this paper is to study two classes of discontinuous control problems without any convexity assumption on the dynamics. In the first part we characterize the value function for the Mayer problem and the supremum cost problem using viscosity tools and the notion of ε-viability (near viability). These value functions are given with respect to discontinuous cost functionals. In the second part we obtain results describing the ε-viability (near viability) of singularly perturbed control systems.  相似文献   

20.
In this paper we consider an optimal control problem for a nonlinear second order ordinary differential equation with integral constraints. A necessary optimality condition in form of the Pontryagin minimum principle is derived. The proof is based on McShane-variations of the optimal control, a thorough study of their behaviour in dependence of some denning parameters, a generalized Green formula for second order ordinary differential equations with measurable coefficients and certain tools of convex analysis.Dedicated to Lothar von Wolfersdorf on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号