首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction between triplet methylene and nitric oxide, producing the formaldiminoxy (CH2NO) radical, and the subsequent decomposition and isomerization reactions of CH2NO have been studied using ab␣initio quantum chemical techniques that include the Gaussian-2 (G2), CASSCF and CASPT2 methods. Stationary points on the potential energy surfaces were located at MP2/6-31G(d) and CASSCF/cc-pVDZ levels of theory, while the electronic energies were determined using G2, G2(MP2), QCISD(T)/cc-pVTZ, RCCSD(T)/cc-pVTZ and CASPT2/cc-pVTZ approaches. G2 is believed to be reliable at equilibrium geometries, but the determination of certain transition state geometries and energies requires a MCSCF-based approach. The calculations suggest that CH2NO (2A) forms in a barrierless reaction and could readily decompose to H+HCNO. A subsequent abstraction reaction then results in H2+CNO. No molecular elimination channel was found. An alternative pathway is the formation of CH2ON, which readily isomerizes to CH2NO. Received: 8 May 1998 / Accepted: 11 August / Published online: 9 October 1998  相似文献   

2.
Stabilization energies for the 1-cyanovinyl radical (CH2=CCN) have been calculated using a variety of conventional ab initio (M?ller–Plesset, quadratic configuration interaction and coupled-cluster) and density functional theory (B-LYP, B3-LYP) procedures, as well as with a range of compound methods. Compared with a high-level benchmark value (that predicts a stabilization energy of 17.1 kJ mol−1), UMP2 and UMP4 give the wrong sign and magnitude of the stabilization energy (both methods predicting desta- bilization instead of stabilization), while B-LYP and B3-LYP overestimate the degree of stabilization. The RMP2, RMP4, QCISD(T) and CCSD(T) techniques, and several, but not all, variants of G2 and CBS theories give radical stabilization energies in good agreement with the benchmark value. Received: 15 June 1998 / Accepted: 19 August 1998 /  Published online: 15 February 1999  相似文献   

3.
These contributions explore interaction modes between the methanethoil (CH3SH) molecule and the Fe(100) surface via implementing accurate density functional theory (DFT) calculations with the inclusion of van der Waals corrections. We consider three adsorption sites over the Fe(100) surface, namely, top(T), bridge (B), and hollow (H) sites as potential catalytic active sites for the molecular and dissociative adsorption of the CH3SH molecule. The molecular adsorption structures are found to occupy either B or T sites with former sites holding higher stability by 0.17 eV. The inclusion of van der Waals corrections refound to slightly alter adsorption energies. For instance, adsorption energies increased by ~ 0.18 and ~ 0.21 eV for B and T structure, respectively, in reference to values obtained by the plain generalized gradient approximation (GGA) functional. A stability ordering of the dissociation products was found to follow the sequence (CH4, S) > (CH3, S, H) > (─SCH3, H) > (─CH3, SH). The differential charge density distributions were examined to underpin prominent electronic contributing factors. Direct fission of C─S bond in the CH3SH molecule attains exothermic values in the range 2.0 to 2.1 eV. The most energetically favorable sites for the surface-mediated fission of the thiol's S─H bond correspond to the structure where the ─SCH3 and H are both situated on hollow sites with an adsorption energy of −2.43 eV. Overall, we found that inclusion of van der Waals functional to change the binding energies more noticeably in case of dissociative adsorption structures. The results presented herein should be instrumental in efforts that aim to design stand-alone Fe desulfurization catalysts.  相似文献   

4.
Thermochemistry and kinetic pathways on the 2-butanone-4-yl (CH3C(=O)CH2CH2•) + O2 reaction system are determined. Standard enthalpies, entropies, and heat capacities are evaluated using the G3MP2B3, G3, G3MP3, CBS-QB3 ab initio methods, and the B3LYP/6-311g(d,p) density functional calculation method. The CH3C(=O)CH2CH2• radical + O2 association reaction forms a chemically activated peroxy radical with 35 kcal mol−1 excess of energy. The chemically activated adduct can undergo RO−O bond dissociation, rearrangement via intramolecular hydrogen transfer reactions to form hydroperoxide-alkyl radicals, or eliminate HO2 and OH. The hydroperoxide-alkyl radical intermediates can undergo further reactions forming ketones, cyclic ethers, OH radicals, ketene, formaldehyde, or oxiranes. A relatively new path showing a low barrier and resulting in reactive product sets involves peroxy radical attack on a carbonyl carbon atom in a cyclic transition state structure. It is shown to be important in ketones when the cyclic transition state has five or more central atoms.  相似文献   

5.
MP4/6-31+G* level calculations are performed to study the reductive bond-breaking reaction of the C-X bond in halomethanes, CH3X and CH2X2 where X is a fluorine atom or chlorine atom. This type of reaction involves a radical anion, after attaching an extra electron to the halomethane molecule, in which a C-X bond-breaking takes place. Products are a radical and a halogen anion. The equilibrium geometry and bond dissociation energy of the C-X bond thus found are in good agreement with previous theoretical and experimental results. The anomeric effect, electrostatic effect, and radical re-stabilization effect, are investigated to find their influences on bond length and bond dissociation energy in CH3X and CH2X2. Potential energy curves are calculated for the reductive bond-cleavage process, and trends in activation energy for various cases are discussed.  相似文献   

6.
On the basis of large-scale coupled cluster calculations including connectedz triple substitutions in a perturbative way, the geometrical parameters of the D 3 h saddle point of the Walden inversion reaction Cl + CH3Cl′→ ClCH3 + Cl′ are predicted to be R s (C—Cl) = 2.301 ? and r s (C—H) = 1.069 ?. The barrier height with respect to the reactants is recommended to be 11.5 ± 1.0 kJ mol−1. Connected triple substitutions lower the barrier height by almost a factor of 2, but have very little influence on the geometric structure of the saddle point. Received: 26 June 1998 / Accepted: 15 July 1998 / Published online: 28 September 1998  相似文献   

7.
Self-consistent-field computations shed light on two relevant conformations of deoxyadenosine (dA) and deoxyguanosine (dG): one with a pseudoequatorial C1′N9 glycosyl bond and the other, a slightly more stable one, with its C1′N9 bond in a bisectional orientation. In dA, both the N3 and N7 nitrogens are plausible sites for electrophilic attack, but only N7 is a plausible site in dG. The addition of H+, CH3 +, C2H5 + or tert-C4H9 + onto N7 does not provoke notable structural modifications and leaves the base of dA and dG in an antiperiplanar (or nearly antiperiplanar) position with respect to the sugar C1′O4′ bond, but N3 additions cause the base to adopt a synperiplanar or strongly chiral position. This produces strong interactions between the purine and deoxyribose moieties, whose relief could aid the eventual cleavage of the glycosyl bond of dA. Addition of a radical cation onto N7 reduces the dissociation energy of the glycosyl bond by an estimated 8 kcal mol−1 in dA and 4 kcal mol−1 in dG – a bond weakening likely to concur to a depurination of DNA induced by radical cations. Received: 13 September 1999 / Accepted: 3 February 2000 / Published online: 21 June 2000  相似文献   

8.
Summary Analytical gradients were used to optimize the polarization function exponents in the 6-31G(d) and 6-31G(d, p) basis sets for the reactants, transition structures and products in the reactions H2SO HSOH and CH3SH CH2SH2. The optimizedd exponents on the heavy atoms change by ±10% in the course of the reactions and depend on the bonding of the heavy atoms. Thep exponents on the hydrogens change by as much as a factor of 5 and depend on the element to which the hydrogen is bonded and its valency. The effect of exponent optimization on the relative energies is small (±3 kcal/mol). With the 6-31G(d, p) basis set, optimization of the polarization exponents can make some of the bonds significantly more polar, as judged by the Mulliken charges.  相似文献   

9.
Oxidation of methyl ethyl sulfide (CH3SCH2CH3, methylthioethane, MES) under atmospheric and combustion conditions is initiated by hydroxyl radicals, MES radicals, generated after loss of a H atom via OH abstraction, will further react with O2 to form chemically activated and stabilized peroxyl radical adducts. The kinetics of the chemically activated reaction between the CH3SCH2CH2• radical and molecular oxygen are analyzed using quantum Rice-Ramsperger-Kassel theory for k(E) with master equation analysis and a modified strong-collision approach to account for further reactions and collisional deactivation. Thermodynamic properties of reactants, products, and transition states are determined by the B3LYP/6-31+G(2d,p), M062X/6-311+G(2d,p), ωB97XD/6-311+G(2d,p) density functional theory, and CBS-QB3, G3MP2B3, and G4 composite methods. The reaction of CH3SCH2CH2• with O2 forms an energized peroxy adduct CH3SCH2CH2OO• with a calculated well depth of 34.1 kcal mol−1 at the CBS-QB3 level of theory. Thermochemical properties of reactants, transition states, and products obtained under CBS-QB3 level are used for calculation of kinetic parameters. Reaction enthalpies are compared between the methods. The temperature and pressure-dependent rate coefficients for both the chemically activated reactions of the energized adduct and the thermally activated reactions of the stabilized adducts are presented. Stabilization and isomerization of the CH3SCH2CH2OO• adduct are important under high pressure and low temperature. At higher temperatures and atmospheric pressure, the chemically activated peroxy adduct reacts to new products before stabilization. Addition of the peroxyl oxygen radical to the sulfur atom followed by sulfur-oxygen double bond formation and elimination of the methyl radical to form S(= O)CCO• + CH3 (branching) is a potentially important new pathway for other alkyl-sulfide peroxy radical systems under thermal or combustion conditions.  相似文献   

10.
A computational study of perfluorinated methane derivatives was performed with complete basis set ab initio methods. The total energies for their neutral, cation, and anionic states were computed. From these values, the energy gaps between different electronic states, ionization potentials, electron affinities, and C-F bond dissociation energies were calculated. The computed values are compared with experimental data and the reliability of complete basis set ab initio methods is discussed. New values for C-F bond dissociation energies are suggested. Received: 12 January 1998 / Accepted: 2 April 1998 / Published online: 29 July 1998  相似文献   

11.
A large-scale one-centre expansion with a radial B-spline basis set is implemented for bound and continuum states. A Kohn-Sham hamiltonian is employed with Hartree and exchange-correlation potentials calculated from the SCF electron density taken from a previous LCAO calculation. An inverse iteration method is used to obtain the continuum wavefunction, from which the cross section and asymmetry parameter are calculated. The convergence with respect to angular momentum and cut-off radius is analysed for N2. The relevance of multipolar contributions even at large distances is shown and suggestions for further improvements are given. In order to show that the present method is suitable to treat systems of moderate size, the (CH3)3N molecule has also been calculated and the results are compared with experiment. Received: 19 May 1998 / Accepted: 20 August 1998 / Published online: 7 December 1998  相似文献   

12.
The mechanism for the CH2SH + O2 reaction was investigated by DFT and ab initio chemistry methods. The geometries of all possible stationary points were optimized at the B3LYP/6-311+G(d,p) level, and the single point energy was calculated at the CCSD(T)/cc-pVXZ(X = D and T), G3MP2 and BMC-CCSD levels. The results indicate that the oxidation of CH2SH by O2 to form HSCH2OO is a barrierless process. The most favorable channel is the rearrangement of the initial adduct HSCH2OO (IM1) to form another intermediate H2C(S)OOH (IM3) via a five-center transition state, and then the C–O bond fission in IM3 leads to a complex CH2S. . .HO2 (MC1), which finally gives out to the major product CH2S + HO2. Due to high barriers, other products including cis- and trans-HC(O)SH + HO could be negligible. The direct abstraction channel was also determined to yield CH2S + HO2, with the barrier height of 22.3, 18.1 and 15.0 kcal/mol at G3MP2, CCSD(T)/cc-pVTZ and BMC-CCSD levels, respectively, it is not competitive with the addition channel, in which all stationary points are lower than reactant energetically. The other channels to produce cis- and trans-CHSH + HO2 are also of no importance.  相似文献   

13.
The geometries and bonding characteristics of the complexes of the first-row transition-metal ions with CH, CH2 and CH3 were investigated byab initio molecular orbital theory. MCH+ and MCH2 + are linear and coplanar, respectively. Both of them are with obvious treble or double bond characteristics, but these multiple bonds are mostly “imperfect”. The calculated bond dissociation energies of , and are mostly close to the experimental values, and appear in similar periodic trends from Sc to Zn. Project supported by the National Natural Science Foundation of China (Grant No. 29170070).  相似文献   

14.
An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

15.
The reaction mechanism of model compounds H2S and CH3SH for cysteine proteases with NH2CH2COCH2X (X = F and Cl) molecules has been investigated using DFT methods with B3LYP and B3PW91 hybrid density functionals at 6‐31+G* basis sets. The single point energy has been calculated for the above reactions with B3LYP and B3PW91 functionals using aug‐cc‐PVDZ infinite basis set in both gas and solution phases. The intrinsic reaction coordinates calculations have been performed to confirm that each transition state is linked by the desired reactants and products. The geometries and relative energies for various stationary points have been determined and discussed. The zero point vibrational energy corrections have been made to predict the reliable energy. The negative value of reaction energy indicates that the overall reaction profile is found to be exothermic. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
A theoretical study of the structure, charge distribution, rotational barrier and fundamental vibrations of anhydrous betaine (CH3)3NCH2COO (trimethylglycine) was carried out and compared with available experimental data. Calculations were carried out at HF, MP2 and B3LYP levels using a 6-31+G(d,p) basis set. The calculated rotational barrier of the betaine carboxylic group is 40.5 kJ/mol at the MP4(SDQ)/6-311G(d,p)//HF/6-31+G(d,p) level of theory. The rotation of the carboxylic group changes the molecule from a highly symmetric (C s ) conformation into a twisted conformation resulting in shortening of the molecule by about 50 pm. Natural population analysis (NPA) indicates intramolecular interaction between the carboxylic oxygen and the nearest methyl hydrogens resulting in internal hydrogen bonding. MP4(SDQ)/6-311G(d,p) single-point NPA calculations on a betaine monohydrate model taken from the X-ray geometry show an expected weakening in the internal hydrogen bond. Calculations explain why betaine preferentially crystallizes in high local C s symmetry. Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 7 December 1998  相似文献   

17.
The physicochemical properties and electrochemical behaviour of products obtained by anodic oxidation of 2-aminofluorene in CH2Cl2 + 0.2 M Bu4NBF4 are presented together with the oxidation conditions. Received: 8 January 1998 / Accepted: 21 September 1998  相似文献   

18.
A kinetic study of the reactions of H atoms with CH3SH and C2H5SH has been carried out at 298 K by the discharge flow technique with EPR and mass spectrometric analysis of the species. The pressure was 1 torr. It was found: k1 = (2.20 ± 0.20) × 10?12 for the reaction H + CH3SH (1) and k2 = (2.40 ± 0.16) × 10?12 for the reaction H + C2H5SH (2). Units are cm3 molecule?1 s?1. A mass spectrometric analysis of the reaction products and a computer simulation of the reacting systems have shown that reaction (1) proceeds through two mechanisms leading to the formation of CH3S + H2 (1a) and CH3 + H2S (1b).  相似文献   

19.
20.
The Kramers' restricted Hartree–Fock (KRHF) and second-order Møller–Plesset perturbation (KRMP2) methods using relativistic effective core potentials (RECP) with spin–orbit operators and two-component spinors are extended to the unrestricted forms, KUHF and KUMP2. As in the conventional unrestricted methods, the KUHF and KUMP2 methods are capable of qualitatively describing the bond breaking for a single bond. As a result, it is possible to estimate spin–orbit effects along the dissociation curve at the HF and MP2 levels of theory as is demonstrated by the test calculations on the ground states of HI and CH3I. Since the energy lowering due to spin–orbit interactions is larger for the I atom than for the closed-shell molecules, dissociation energies are reduced and bond lengths are slightly elongated by the inclusion of the spin–orbit interactions. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 91–98, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号