首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The S–H and C–S bond dissociation energies for simple alkylthiols and dialkylsulphides, along with the S–S bond dissociation energy for dimethyl disulphide, compounds which have been used in the metal–organic chemical vapour deposition (MOCVD) growth of wide band gap II–VI (12–16) Zn- and Cd-based compound semiconductors, have been computed using the ab initio (ROHF and MP2) and density functional theory (DFT) methods (BHandH, BHandHLYP, B3LYP, B3P86, B3PW91, BLYP and BP86) with the 6-311+G(2d,p) basis set along with high accuracy complete basis set, CBS-4 and CBS-Q energy computations. The computed energies are compared with experimental results and the suitability of the DFT methods, for the computational study of these systems, is discussed.  相似文献   

2.
Ionization potentials, bond dissociation energies, and heat of formation for NH and NH+ molecular species as well as for their elements were computed with highly reliable quadratic complete basis set and Gaussian-2 ab initio methods. The results are compared with experimental results and the assurance of these ab initio approaches is assessed. The same studies were also performed with three hybrid density functional methods (B3LYP, B3P86, and B3PW91) in combination with variously sized basis sets. The computational results are discussed in light of density functional theory reliability for exploring the potential energy of small polar molecular systems. Received: 21 July 1997 / Accepted: 8 December 1997  相似文献   

3.
The HF, MP2, MP3, MP4, and QCISD ab initio methods were compared with local, hybrid, and gradient-corrected density functional theory (DFT) methods for computing structures and energies of N2F4 rotamers. In all DFT calculations 6-311 + G(2d) basis set was used. The generated structures energies of trans- and gauche-N2F4 rotamers, and their dissociation energies to nitrogen difluoride were compared with experimental data. Suitable hybrid and gradient-corrected DFT methods for determining structures and energies for these and similar molecular systems were discussed.  相似文献   

4.
The C−NO2 bond dissociation energies in nitrobenzene; 3-amino-nitrobenze; 4-amino-nitrobenze; 1,3-dinitrobenzene; 1,4-dinitrobenzene; 2-methyl-nitrobenzene; 4-methyl-nitrobenzene; and 1,3,5-trinitrobenzene nitroaromatic molecules, are computed using B3LYP, B3PW91, B3P86 three-parameter hybrid Density Functional Theory (DFT) methods in conjunction with 6-31G** basis set. By comparing the computed energies and experimental ones, it is found that B3P86/6-31G** is not capable of predicting the satisfactory bond dissociation energy (BDE). The BDEs computed with both B3LYP/6-31G** and B3PW91/6-31G** for the nitroaromatic molecules are closer to the experimental ones than those obtained with B3P86/6-31G**. But, when compared with the experimental one, the BDE from the B3LYP/6-31G** has the maximum deviation, which is completely outside our desired target accuracy for chemical predictions (less than 2.00 kcal mol−1). Therefore, we suggest B3PW91/6-31G** method as a reliable method of computing the BDE for removal of the nitrogen dioxide group in the nitroaromatic compounds. In addition, the C−NO2 BDEs for 2,4,6-trinitrotoluene (TNT), triaminotrinitrobenzene (TATB), diaminotrinitrobenzene (DATB), and picramide are studied with B3PW91/6-31G** method.  相似文献   

5.
The C? NO2 bond dissociation energies (BDEs) and the heats of formation (HOFs) of nitromethane and polynitromethanes (dinitromethane, trinitromethane, and tetranitromethane) system in gas phase at 298.15 K were calculated theoretically. Density functional theory (DFT) B3LYP, B3P86, B3PW91, and PBE0 methods in combination with different basis sets were employed. It was found that the C? NO2 bond BDEs can be improved from B3LYP to B3PW91 to B3P86 or PBE0 functional. Levels of theory employing B3P86 and PBE0 functionals were found to be sufficiently reliable without the presence of diffusion functions. As the number of NO2 groups on the same C atom increases, the PBE0 functional performs better than the B3P86 functional. Regarding the calculated HOFs, all four functionals can yield satisfactory results with deviations of <2 kcal mol?1 from experimental ones for CH2(NO2)2 and CH(NO2)3, when the diffusion functions are not augmented. For the C(NO2)4 molecule, the large basis sets augmented with polarization functions and diffusion functions are required to yield a good result. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
Complete basis set (CBS) ab initio computational studies were performed with the target being to explore the CH+CH potential energy surface. Several closed and open shell intermediates were located on the potential energy surface. Computed enthalpies for the branching reactions, as well as heats of formation are in excellent agreement. Although CBS computed energies are of high quality, this computational study is not capable of predicting the branching product ratio due to fact that neither the MP2 nor the 6-311G(2d,2p) basis set are sufficient to locate the reactant complexes and the transition state structures for the hydrogen and carbon transfer reactions in the reaction complexes. To properly explore the CH+CH potential energy surface a much higher ab initio theory level is required.  相似文献   

7.
Stabilization energies for the 1-cyanovinyl radical (CH2=CCN) have been calculated using a variety of conventional ab initio (M?ller–Plesset, quadratic configuration interaction and coupled-cluster) and density functional theory (B-LYP, B3-LYP) procedures, as well as with a range of compound methods. Compared with a high-level benchmark value (that predicts a stabilization energy of 17.1 kJ mol−1), UMP2 and UMP4 give the wrong sign and magnitude of the stabilization energy (both methods predicting desta- bilization instead of stabilization), while B-LYP and B3-LYP overestimate the degree of stabilization. The RMP2, RMP4, QCISD(T) and CCSD(T) techniques, and several, but not all, variants of G2 and CBS theories give radical stabilization energies in good agreement with the benchmark value. Received: 15 June 1998 / Accepted: 19 August 1998 /  Published online: 15 February 1999  相似文献   

8.
Here we report ab initio and density functional results for molecular properties of ethyl azidoacetate (N3CH2COOC2H5) and for the corresponding singly ionized structure (N3CH2COOC2H5+). Ab initio ionization energies based on Koopmans’ theorem are in excellent agreement with the experimental data from ultraviolet photoelectron spectroscopy. DFT adiabatic energy differences between neutral and ionized structures are very sensitive to electronic correlation effects and are not in very good agreement with experiment. The results for the structure and vibrational frequencies are compared with the experimental data of related molecular structures.  相似文献   

9.
The molecular conformers of the molecule 1,3,5-benzenetriol have been studied by ab initio and density functional methods to determine optimized equilibrium geometries, harmonic vibrational frequencies and relative stability. The results of the quantum-chemical calculations have been used to investigate the functional theory-infrared (FT-IR) spectrum of the 1,3,5-benzenetriol vapors trapped in Ar matrix at 12 K.  相似文献   

10.
The self-consistent reaction field (SCRF) method based on Onsager's reaction field theory is applied to investigate the effect of polar media on molecular structures of complexes of trimethylamime (TMA) with SOx (x=2,3). The calculated SCRF N–S bond lengths at the MPW1PW91/6-311+G(3df) level are in satisfactory agreement with the experimental N–S bond lengths for the TMA–SOx upon crystallization. The results are enough to demonstrate the usefulness of the reaction field theory in providing qualitative understanding of the medium effect on the partially bonded system such as TMA–SOx.  相似文献   

11.
12.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。  相似文献   

13.
High-level ab initio (MP2/6-311++G(2d,2p) geometry, Gaussian-2, MP4(SDTQ) and QCISD(T) binding energies) and density-functional (Becke3LYP/6-311++G(2df,2pd)) calculations have been performed on the charge-transfer complex between water and carbon dioxide. The complex appears to have two equivalent non-planar minima of Cs symmetry. Minima are separated by transition states with C1 symmetry, whereas the totally planar structure with C2v symmetry is a second-order transition state. All the critical points lie at approximately the same energy (less than 0.05 Kj mol−1 difference). Therefore, the experimentally observable structure should be planar. The best equilibrium intermolecular distance for this complex calculated at the MP2/6-311++G(2d,2p) level is 2.800 Å. Our best estimate of the observable intermolecular distance (corrected for anharmonicity) is 2.84 Å, in agreement with the experimentally derived value of 2.836 Å. Our best estimate of the binding energy at the QCISD(T) level, taking into account the variation of the distance owing to anharmonicity and the use of more sophisticated theoretical treatments, is −12.0 ± 0.2 kJ mol−1. Our best estimate of the barrier to internal rotation, also at the MP2/6-311++G(2d,2p) level, is 4.0 kJ mol−1, outside the error limits of the experimental determination (3.64 ± 0.04 kJ mol−1). Density functional theory at the level employed here gives an equilibrium intermolecular distance that is too large (2.857 Å), a binding energy that is too small (8.1 kJ mol−1), attributable neither to geometry nor to the basis set, and also a barrier to internal rotation that is slightly too small (3.39 kJ mol−1). The overall picture is, however, reasonably good.  相似文献   

14.
采用量子化学密度泛函方法对N-烷基吡啶阳离子和阴离子AlCl4-,Al2Cl7-和Al3Cl10-进行了全优化计算,得到了阴阳离子的几何构型和净电荷分布.计算发现,吡啶环上的电子数符合4n 2规则,具有芳香性.吡啶阳离子的LUMO轨道主要由环上原子的2pz所贡献,是反键π分子轨道.AlCl4-,Al2Cl7-和Al3Cl10-的HOMO轨道主要由Cl原子的2px所贡献.推测吡啶阳离子的LUMO与阴离子的HOMO相互作用形成离子液体分子.  相似文献   

15.
16.
用密度泛函理论UB3LYP/6-31G(d,p)方法研究了二甲胺自由基(CH3)2N及其质子化离子(CH3)2NH 的构象和超精细结构.在由构象研究得到的两种自由基的最稳定结构上,用密度泛函的UB3LYP和UB3PW91方法及从头计算的UHF、UMP2(FULL)方法计算了α-质子、β-质子和N核上的超精细偶合常数A(Hα)、A(Hβ)和A(N)结果表明:两种自由基中甲基内旋转的位垒均很低,分别为0.46kJ·mol-1((CH3)2NH )和2.6kJ·mol-1((CH3)2N).UB3LYP/6-31G(d,p)和UB3PW91/6-31G(d,p)计算的A(Hα)、A(Hβ)和A(N)与ESR实验结果符合得很好,UMP2/6-31G(d,p)方法的计算值与实验值符合得也较好.  相似文献   

17.
A new algorithm for density-functional-theory-based ab initio molecular dynamics simulations is presented. The Kohn–Sham orbitals are expanded in Gaussian-type functions and an augmented-plane-wave-type approach is used to represent the electronic density. This extends previous work of ours where the density was expanded only in plane waves. We describe the total density in a smooth extended part which we represent in plane waves as in our previous work and parts localised close to the nuclei which are expanded in Gaussians. Using this representation of the charge we show how the localised and extended part can be treated separately, achieving a computational cost for the calculation of the Kohn–Sham matrix that scales with the system size N as O(NlogN). Furthermore, we are able to reduce drastically the size of the plane-wave basis. In addition, we introduce a multiple-cutoff method that improves considerably the performance of this approach. Finally, we demonstrate with a series of numerical examples the accuracy and efficiency of the new algorithm, both for electronic structure calculations and for ab initio molecular dynamics simulations. Received: 15 December 1998 /Accepted: 18 February 1999 /Published online: 14 July 1999  相似文献   

18.
Density functional theory was adopted in this work to reveal the reaction mechanism of CH2SH with HO2. Reaction rate constants were computed from 200 to 2000 K using the transition state theory combined with Wigner and Eckart tunneling correction. Moreover, localized orbital locator, atoms in molecules and Mayer bond order analyses were used to study the essence of chemical bonding evolution. Eleven singlet paths and three triplet ones are located on the potential surface (PES). The results show that the main products on the singlet PES are 1CH2S and H2O2, whereas on the triplet PES they are CH3SH + 3O2, which are coincident with the similar reaction of CH3S and HO2. This conclusion is also supported by rate constant calculation results. Interestingly, all the possible paths are involved in the hydrogen transfer. The results have provided underlying insights to the analogous reactions and further experimental studies.  相似文献   

19.
The CCN bond distances and bond dissociation energies (BDEs) are estimated by utilizing quantum chemical calculations for 16 nitrile compounds. Since DFT methods have been researched to have low basis sets sensitivity for small and medium molecules in our earlier work [Jun Zhao, Xinlu Cheng, Xiangdong. Yang, J. Mol. Struct. (Theochem) 766 (2006) 87] 16 nitrile compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) and the complete basis set (CBS-Q) method in conjunction with the 6-311G** basis set. The obtained results are compared with the available experimental data. It is demonstrated that CBS-Q method, which can produce reasonable BDEs for some systems, seems unable to predict accurate BDEs here. While, the B3P86 calculated results agree very well with the experimental values. So B3P86 method is suitable for computing the reliable BDEs of CCN bond for nitrile compounds.  相似文献   

20.
The geometries and S-H, S-S, and S-C bond dissociation energies for hydrogen sulfide, hydrogen disulfide, methanethiol, dimethyl disulfide, and dimethyl disulfide were calculated with both ab initio (ROHF and MP2), hybrid (BHandH, BHandHLYP, Becke3LYP and Becke3P86), and nonlocal (BLYP and BP86) density functional theory (DFT) methods. In all studies the 6–31 + G(d) basis set is used. The computed results are compared to the experimentally obtained values, targeting the selection of a suitable ab initio or DFT method for the study of these systems. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号