首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Taking advantages of nuclear analytical techniques (NATs) with non-destruction, multielement capability, small and estimable uncertainties over a wide range of sample sizes, the sampling behavior of multielements for a home-made natural matrix material was studied with sample sizes ranging from several hundred mg down to tenths ng, namely nine orders of magnitude, by a combination of three NATs, neutron activation analysis (NAA), proton induced X-ray emission (PIXE) and synchrotron radiation X-ray flurescence (SR-XRF), in an effort to explore a procedure for the development of certified reference materials (CRMs) suitable for quality control of microanalysis. For accurately weighable sample sizes (>1?mg), sampling uncertainties for 13 elements were found to be less than 1% by INAA. For sample sizes unable to be accurately weighed (<1?mg), PIXE and SR-XRF were used, respectively. Sampling uncertainties were found to be less than 1% at sample sizes of tenth mg level for seven elements, and less than 10% on ng levels for three elements. Considering these three elements have satisfied homogeneity (sampling uncertainty less than 10%) at ng sample size level, any one of them can be served as a ??relative balance?? in sampling behavior characterization of multielements on sample size levels larger than ng (e.g., ??g level). On this basis, sampling uncertainties for nine elements were found to be less than 10% on ??g sample size level by INAA. The results indicate that the matrix is eligible as a candidate of CRMs suitable for quality control of solid sampling microanalysis.  相似文献   

2.
The minimum sample size, usually 100 mg or larger, is often the only information given on certificates of existing certified reference materials (CRMs) to describe sampling behavior. This value is not only too large for quality control requirements of microanalysis, but also too general to reflect the strong element-specific nature of the sampling behavior of solid materials. In this paper, the third and final of the series, we explain the need for CRMs with sampling behavior characterized for individual elements and describe the unique role of instrumental neutron activation analysis in sampling behaviour characterization. Received: 19 March 2001 Accepted: 2 October 2001  相似文献   

3.
Taking the advantage of the high precision and accuracy of neutron activation analysis (NAA), sampling constants have been determined for multielements in several international and Chinese reference materials. The suggested technique may be used for finding elements in existing CRMs qualified for quality control (QC) of small size samples (several mg or less), and characterizing sampling behaviors of multielements in new CRMs specifically made for QC of microanalysis.  相似文献   

4.
Radiochemical neutron activation analysis was used for determinationsof 8 rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in two ChineseCRMs, GBW 08503 (wheat) and GBW 09101 (hair), and Cs, Sr, Th and U in fiveNIST SRMs, 1548 (Total Diet), 1486 (Bone Meal), 8414 (Bovine Muscle), 1566a(Oyster Powder) and 1575 (Pine Needles). These determinations are for eventualcertification of above ultratrace elements so far not certified. The radiochemicalseparation scheme used in RNAA of NIST SRMs is an anion exchange followedby the co-precipitation by (REE)F 3 for U and Th, and a SrSO 4 precipitationfor Sr and Cs. For RNAA of the two Chinese CRMs, a one step (REE)F 3 precipitationwas used. Chemical yields were determined for all relevant elements by tracerexperiments. All these materials were also analyzed by ICPMS, that offeredan opportunity to compare the two major trace analytical techniques on theirmerits and drawbacks for these particular cases. RNAA is proven to be oneof the important techniques in ultratrace analysis, especially in certificationof some ultratrace elements. Determination of elements in sub-ng/g level isstill an area to be further investigated because: (1) some such elements areimportant in food and health related environmental studies, (2) many of theseelements have no (or very few) certified values in existing biological CRMs,(3) reliable techniques qualified for ultratrace analysis are needed to beestablished, and (4) sampling behavior of elements at these levels is stillnot very well known (recommended minimum sample size may not be adequate).  相似文献   

5.
Homogeneity of the existing (Virginia Tobacco Leaves CTA-VTL-2 (ICHTJ), Apatite Concentrate CTA-AC-1 (ICHTJ), Fine Fly Ash CTA-FFA-1 (ICHTJ) and candidate certified reference materials (CRMs) (IAEA-338 Lichen, IAEA-413 Algae, Spruce Shoots RMF II (Germany)) was studied by neutron activation analysis (NAA). Several samples of small mass (ca. 1 or 10 mg) taken from various containers were analyzed by instrumental NAA and the results for several elements were compared by Fisher's test and t-test with analogous series of results for samples taken from one container. In the second approach, sampling variance was estimated for some elements from overall variance and the components of analytical variance. The results were interpreted with the aid of Ingamells' sampling constant. Particle size distribution of the reference materials was also measured by several techniques. In addition quantitative determinations for some elements were performed and results compared with the certified values. The results of the present study were discussed with reference to suitability of CRMs to microanalytical techniques. It was pointed out that the term "microanalysis" itself is not always unequivocally understood and used.  相似文献   

6.
Sampling behavior of multielements for NIST SRM 2703, a marine sediment, was studied with sample sizes from 1 mg down to ng level by a combination of INAA, PIXE and SRXRF. On 1 mg sample size level, sampling behavior for multielements in NIST SRM 2703 and its parent SRM 2702 were comparatively characterized by using INAA combining with Ingamells model. Results showed that sampling uncertainties for 12 elements of both materials were found to be better than 1%, and those of four other elements in SRM 2703 better than in SRM 2702. At sample sizes not able to be accurately weighed (<1 mg), PIXE and SRXRF were used and the effective sample sizes estimated. Sampling uncertainties for nine elements were found to be better than 1% at sample sizes of tenth mg level, and those for six elements better than 10% on ng levels.  相似文献   

7.
Certifications of trace elements in existing CRMs, especially biological CRMs, are far from satisfactory. Neutron activation analysis (NAA) for its inherent advantages combined with newly established parametric standardization, may contribute to improve this situation. The continuing progress of the hybrid extended k 0-relative NAA technique developed in our laboratory is discussed. Examples are given to show the reliability of the method in certification of multielements. RNAA is still one of the best methods, or even the method of choice, in analysis at sub-g/g concentration levels. The suitability of the technique for this purpose has been studied through the determination of rare earth elements at ng/g concentration level in two Chinese biological CRMs using both RNAA and ICPMS. Sampling behaviors of multielements in CRMs have been studied by INAA in an effort to develop CRMs suitable for analysis with small sample sizes.  相似文献   

8.
In a series of three papers, the inherent characteristics of relative instrumental neutron activation analysis (INAA) as a primary ratio method of measurement, the unique functions of parametric INAA as an ideal back-up method of the relative INAA, and the valuable role of INAA in characterization of sampling behavior of individual elements in certified reference materials (CRMs) will be discussed. In this paper, the first of the series, the uncertainty evaluation and the traceability of values measured by neutron activation analysis (NAA), especially instrumental NAA (INAA), will be described to demonstrate the method at its ”the state-of-the-art” level can meet CCQM criteria for a primary ratio method. The scope and examples will be given. Received: 19 March 2001 Accepted: 2 October 2001  相似文献   

9.
Chemical analysis is a multi-stage process, which starts with primary sampling and ends with evaluation of the resuts. Especially in trace analysis and microanalysis of solid materials, sampling can far outweigh all other sources of error. For estimating the reliability of complete analytical procedures, a method is needed which can be used to estimate the errors made in the primary and the secondary sampling and sample preparation steps. Based on Gy's theory of sampling, a computer program (SAMPEX) was written for the solution of practical sampling problems. The method involves the estimation of the sampling constant, C. For well-characterized materials, C can be estimated from the material properties. If the necessary material properties are difficult to estimate, C can be evaluated experimentally. The program can be used to solve the following problems: minimum sample size for a tolerated relative standard deviation of the fundamental sampling error; relative size for a tolerated for a given sample size; maximum particle size of the material for a specified standard deviation and sample size; balanced design of a multi-stage sampling and sample-reduction process; and sampling for particle size determination.  相似文献   

10.
Chemical measurements often constitute the basis for informed decision-making at different levels in society; sound decision-making is possible only if the quality of the data used is uncompromised. To guarantee the reliability and comparability of analytical data an intricate system of quality-assurance measures has to be put into effect in a laboratory. Reference materials and, in particular, certified reference materials (CRMs) are essential for achieving traceability and comparability of measurement results between laboratories and over time. As in any other domain of analytical chemistry, techniques used to monitor the levels and fate of contaminants in the environment must be calibrated using appropriate calibration materials, and the methods must be properly validated using fit-for-purpose matrix-matched CRMs, to ensure confidence in the data produced. A sufficiently large number of matrix CRMs are available for analysis of most elements, and the group of chemicals known as persistent organic pollutants, in environmental compartments and biota. The wide variety of analyte/level/matrix/matrix property combinations available from several suppliers enables analysts to select CRMs which sufficiently match the properties of the samples they analyse routinely. Materials value-assigned for the so-called emerging pollutants are scarce at the moment, though an objective of current development programmes of CRM suppliers is to overcome this problem.  相似文献   

11.
A rapid method of microanalysis for carbon and hydrogen in organic compounds using an empty combustion tube fused with two nozzles for flushing oxygen and employing reduced copper for the reduction of nitrogen oxide was investigated. A sample was decomposed rapidly in a sample heater for 2 min, and the gasified vapor was transported to the stationary combustion zone heated at 850 °C, where oxygen was flushing from two nozzles, the oxygen flow was then replaced with nitrogen for 3 min until all the combustion products were swept out towards the absorption train. The sample size was suggested to be around 1 mg for this rapid method, using a Mettler UM6, or an electrobalance having equal precision for the sampling.  相似文献   

12.
A method for the determination of titanium in graphite furnace atomic absorption spectrometry with slurry sampling was developed. Titanium forms thermally stable carbides in the graphite tube that leads to decreased sensitivity and severe memory effects. Various fluorinating agents, BaF(2), NH(4)F, and CHF(3) (Freon-23) were therefore examined in order to reduce or eliminate these problems. Ti was determined, at various concentration levels, in certified reference materials (CRMs) using ultrasonic slurry sampling graphite furnace atomic absorption spectrometry (USS-GFAAS). The three CRMs, GBW 07601 (Human Hair Powder), GBW 07602 (Bush Branches and Leaves), and GBW 07411 (Chinese Soil), contained 2.7 microg g(-1), 95 microg g(-1), and 0.41% Ti, respectively. For comparison, determinations of Ti were made with modifiers (BaF(2) and NH(4)F) and without modifier, using 5% CHF(3) (in argon) for cleaning the graphite furnace. Good accuracy was obtained using aqueous Ti standards for calibration. A homogeneity study showed that Ti was evenly distributed in all the samples at the mg-microg level. The relative standard deviations (RSDs) obtained for the three CRMs were 16%, 11%, and 8% ( n=30). In spite of the wide range of Ti concentrations in the present samples, the same wavelength (365.4 nm) could be used for analysis by varying the slurry sample concentration. The precision was best for the material with the highest titanium content in spite of the fact that only 3 microg of sample was introduced into the furnace.  相似文献   

13.
Electron probe microanalysis (or Scanning electron microscope-energy dispersive X-ray spectrometry) has been studied under grazing-exit conditions. That is, characteristic X-rays are detected at a very small take-off (exit) angle; the technique is known as grazing-exit electron probe microanalysis (GE-EPMA). Fundamental aspects, instrumentation, and characteristics of grazing-exit electron probe X-ray microanalysis method are described here. Since the observation depth decreases as the exit angle decreases, theoretically to a few nanometers, surface analysis is possible in grazing-exit electron probe X-ray microanalysis. Of course, the size of the electron beam is also small—less than 1 μm, enabling localized surface analysis. In the case of total reflection X-ray spectrometry that allows surface analysis, the whole sample surface must be flat. However, the requirement for flatness is not as strict in grazing-exit electron probe X-ray microanalysis. Grazing-exit electron probe X-ray microanalysis measurements can easily be applied using a commercially available electron probe microanalysis (or Scanning electron microscope-energy dispersive X-ray spectrometry) instrument. To change and control the exit angle in grazing-exit electron probe X-ray microanalysis, the inclination of the sample stage or movement of the X-ray detector is all that is required. Theoretically, this study shows that grazing-exit electron probe X-ray microanalysis would be useful in improving the lateral resolution of the sample surface. In addition, the study demonstrates that grazing-exit electron probe X-ray microanalysis can be applied successfully for surface, thin-film, and particle analyses. As an optional method of electron probe microanalysis, grazing-exit electron probe X-ray microanalysis will be useful in expanding the research fields of normal electron probe microanalysis.  相似文献   

14.
With the emergence of highly sensitive analytical techniques, the microanalysis of natural-matrix materials employing smaller sample sizes is increasingly more common, which subsequently warrants a homogeneity assessment for the individual components at the appropriate sampling level. Pressurized liquid extraction (PLE) in combination with gas chromatography/mass spectrometry (GC/MS) has been used to determine the sampling constants and evaluate the relative homogeneity of trace levels of polycyclic aromatic hydrocarbons (PAHs) for two previously certified particulate standard reference materials, SRM 1649a Urban Dust and SRM 1650b Diesel Particulate Matter, in the milligram sampling range. Fluoranthene, pyrene, benz[a]anthracene and benzo[e]pyrene within SRM 1650b Diesel Particulate Matter were deemed to be homogeneous, based on relatively small sampling constants (K S<100 mg), whereas the larger sampling constants (K S>100 mg) obtained for all PAHs in SRM 1649a Urban Dust suggest more material heterogeneity. The material heterogeneity of ten individual PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene) was also described via nonlinear relationships (i.e., power law) between subsampling error S s (%) and sample mass, which are used to predict analyte-specific minimum sample masses that result in a specific level of analytical uncertainty. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
Certified reference materials (CRMs) play a critical role in validating the accuracy of nutrient data for food samples. A number of available food CRMs of differing matrix composition have assigned concentrations for various nutrients, along with associated uncertainty intervals (UIs) for those values. These CRMs have been used extensively in the United States Department of Agriculture’s (USDA) ongoing National Food and Nutrient Analysis Program (NFNAP) to monitor the accuracy of assays of key foods and nutrients consumed in the United States. A total of 690 assigned values for individual nutrients, including proximates, vitamins, macroelements, microelements, fatty acids, amino acids, and selected phytochemicals (e.g., carotenoids), were compiled from the certificates of analysis for 63 CRMs, and the specified UI in each case was expressed as a percentage of the assigned certified or reference concentration. Across all nutrients, 63.5% of the UIs were less than 10% of the assigned value, 25.5% were 10–20%, and 11% were greater than 20% of the assigned value. The UIs for proximates, minerals, and trace elements were most consistently less than 10% of the assigned value. The relative uncertainties were significantly higher for vitamins, suggesting greater challenges in measuring and certifying these components. These high UIs (greater than 10% assigned value) in the best available reference materials are likely to be indicative of the precision and accuracy that can be obtained by current measurement systems for these components. These data suggest that care must be taken in choosing CRMs to monitor food composition analysis, including evaluating what levels of uncertainty are required in assigned values and which analytical measurement systems for food components need closer examination and improvement. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Presented at ‘BERM-10’, April 2006, Charleston, SC, USA.  相似文献   

16.
In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO2, CaCO3, and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis.  相似文献   

17.
The concern for the control of toxic chemical forms of elements in the environment is reflected by an increasing number of analyses performed by research and routine laboratories. The European Commission has recognised the need to include some of these species in the list of dangerous substances to be monitored, e.g. in the marine environment or in groundwater. However, in most cases, the specifications are far from being sufficient in respect to the chemical forms of the element to be determined. Furthermore, these determinations are in most cases based on multi-step analytical techniques which are often prone to errors (e.g. at the extraction, derivatization or separation steps). Certified reference materials (CRMs) certified for their content in chemical forms of elements are, therefore, necessary to ensure the accuracy of these measurements and hence the respect of the regulations. However, the lack of CRMs for speciation analysis hampers the quality control of determinations which in turn leads to an incomparability of data produced; so far the number of CRMs produced by international organisations, e.g. NIST (USA), NIES (Japan), NRCC (Canada) and BCR (Belgium), is very limited and concerns mainly compounds such as e.g. methyl-mercury and butyltin compounds in biological matrices or sediments. The Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a series of projects for the improvement of speciation analysis in environmental matrices, the final aim of which being the production of a variety of environmental CRMs. The existing EU legislation involving chemical forms of elements is presented, the requirements for the preparation of CRMs for speciation analysis are discussed and an update of the most recent CRMs produced within the Standards, Measurements and Testing Programme (SM&T) is given.  相似文献   

18.
The concern for the control of toxic chemical forms of elements in the environment is reflected by an increasing number of analyses performed by research and routine laboratories. The European Commission has recognised the need to include some of these species in the list of dangerous substances to be monitored, e.g. in the marine environment or in groundwater. However, in most cases, the specifications are far from being sufficient in respect to the chemical forms of the element to be determined. Furthermore, these determinations are in most cases based on multi-step analytical techniques which are often prone to errors (e.g. at the extraction, derivatization or separation steps). Certified reference materials (CRMs) certified for their content in chemical forms of elements are, therefore, necessary to ensure the accuracy of these measurements and hence the respect of the regulations. However, the lack of CRMs for speciation analysis hampers the quality control of determinations which in turn leads to an incomparability of data produced; so far the number of CRMs produced by international organisations, e.g. NIST (USA), NIES (Japan), NRCC (Canada) and BCR (Belgium), is very limited and concerns mainly compounds such as e.g. methyl-mercury and butyltin compounds in biological matrices or sediments. The Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a series of projects for the improvement of speciation analysis in environmental matrices, the final aim of which being the production of a variety of environmental CRMs. The existing EU legislation involving chemical forms of elements is presented, the requirements for the preparation of CRMs for speciation analysis are discussed and an update of the most recent CRMs produced within the Standards, Measurements and Testing Programme (SM&T) is given.  相似文献   

19.
Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.  相似文献   

20.
Certified reference materials (CRMs) are used in analytical chemistry for method validation studies in order to establish measurement accuracy, traceability, and long-term stability throughout repeated analyses. Quality control (QC) during routine analysis requires access to stable materials appropriate for the sample matrix being analyzed. However, it may be difficult to find representative, low-cost QC materials, especially for specific analytes in biological tissue matrices. Here, four caprine liver pools are prepared for use as internal QC materials for trace element measurements in biological tissue. Analytes of interest include essential and nonessential trace elements and the lanthanide series elements. The suitability of caprine liver to serve as a secondary reference material (RM), as well as for routine QC purposes, is demonstrated through homogeneity and stability measurements, and the acquisition of precision and uncertainty data. Traceability is established for selected analytes for which available CRMs can provide an unbroken chain of calibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号