首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(trimethylene terephthalate) (PTT), a highly birefringent aromatic polyester, has been utilized to understand the mechanisms of crystal assembly into diversified types of banded spherulites. PTT exhibits three main types of banded spherulites (i.e., concentric, single‐spiral, and double‐spiral) co‐existing in sample films melt‐crystallized at 165 °C, regardless of sample thickness. The three types differ in their banding structures, interference color distributions, and nuclei geometries (S‐shape, Z‐shape, or dot‐shape). Core diameter, band spacing ratio, and height difference (Δz) around the core are the three key parameters of different banding patterns in PTT spherulites. Formation mechanism for three types of banded spherulites has been interpreted, and found to be highly correlated with the initial geometry shapes of their nuclei. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1207–1216  相似文献   

2.
Top-surface and three-dimensional views of Type-1 and Type-2 of ring-banded spherulites in poly(nonamethylene terephthalate) (PNT) in thicker bulk crystallized on a nucleating potassium bromide (KBr) substrate were examined using various microscopy techniques: scanning electron microscopy (SEM), polarized-optical microscopy (POM), and atomic-force microscopy (AFM). In PNT crystallized at higher crystallization temperature (T(c)) with heterogeneous nucleating substrate, typically two types of ring-banded spherulites are present that differ significantly in patterns and ring spacings: Type-1 Type-2 (single- and double-ring-banded spherulites). Three-dimensional view on fractured spherulites in bulk PNT samples reveals that the single-ring-banded spherulite (Type-1) tends to be well-rounded spheres as they are nucleated homogeneously from bulk; the double-ring-banded spherulite (Type-2) is concentric hemisphere or truncated sphere shells owing to be nucleated from bottom. With confined thickness of films, the 3-D hemispheres in PNT may become truncated into multi-shell annular cones or arcs when thickness or growth is restricted. Based on the top-surface vs. interior views of banded lamellar assembly, origins and inner structures of dual types of ring bands in PNT were examined in greater details.  相似文献   

3.
The lamellar types as revealed by the multiple melting peaks and possible mechanisms of ringed spherulites in poly(trimethylene terephthalate) (PTT) were analyzed with differential scanning calorimetry (DSC), optical microscopy, and scanning electron microscopy. Several interesting correlations were found. If PTT is melt‐crystallized in a certain temperature range, it shows multiple melting peaks and rings in PTT. Once rings are formed in the original melt‐crystallized PTT, they do not disappear but persist and become even more apparent upon postcrystallization annealing at higher temperatures. Furthermore, for PTT that is capable of exhibiting ringed spherulites, a temperature range exists where rings do not form. This behavior can be interpreted in relation with the demonstrated thermal behavior in PTT. Reorganization took place upon postcrystallization scanning or annealing to or at higher temperatures. A postulation was proposed and rigorously tested with evidence to correlate the ringed spherulites and melting behavior. Rings in PTT may be related to multiple lamellae in the spherulites. Consequently, if a temperature of crystallization is selected so that there is only one type of lamella in the spherulites, then there should be no rings. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 80–93, 2002  相似文献   

4.
Spherulite ring-band patterns and growth regimes in neat poly(?-caprolactone) (PCL) and its miscible blends were analyzed using polarized-light optical microscopy and differential scanning calorimetry (DSC). Spherulite growth in thin-film forms and transformation of spherulite patterns in different regimes were investigated by comparing neat PCL with its miscible blends. Three miscible diluents in PCL were probed: poly(p-vinyl phenol) (PVPh), poly(benzyl methacrylate) (PBzMA), and poly(phenyl methacrylate) (PPhMA), which represent strong H-bonding and weak polar interactions, respectively. Blending of PCL with miscible amorphous polymers changes the spherulite patterns significantly. The effect of different diluent polymers varies. Inclusion of different amorphous polymers in PCL leads to different extents of suppression in growth rates and induces different spherulitic patterns. The H-bonding interaction leads to that the PCL/PVPh blend shows dendritic crystals and no ring bands. Although PPhMA differs from PBZMA only by a methylene in the chemical structure of repeat unit, the coil-like textures of ring bands in the PCL/PPhMA blend are widely different from the zig-zag ring bands in the PCL/PBzMA blend. Regime plots show that the growth of neat PCL behaves quite differently from any of its blends with amorphous polymers (PVPh, PPhMA, or PBzMA). Regime plots for PCL/PBzMA blend also differ from those for the PCL/PPhMA blend, which correlates with the crystal patterns seen in these two blend systems.  相似文献   

5.
Poly(octamethylene terephthalate) (POT), a semicrystalline aromatic polyester, is synthesized by melt‐condensation reaction, and its thermal property and crystal structure are investigated by using differential scanning calorimetry, X‐ray diffraction, and molecular modeling methods, respectively. It is revealed that the synthesized POT sample has comparably low melting temperature of 131 °C and forms one crystalline phase. Based on two‐dimensional X‐ray fiber diagram and molecular modeling analyses, the crystal structure of POT is identified to be triclinic with dimensions of a = 4.560 Å, b = 5.597 Å, c = 18.703 Å, α = 104.87°, β = 119.45°, and γ = 100.32°, in which one chemical repeating unit of POT with all‐trans conformation of octamethylene group is packed according to the space group of . © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 276–283, 2009  相似文献   

6.
Normal and abnormal spherulites of polybutylene terephthalate cast from solution in HFIP were investigated by electron microscopy (CTEM and STEM). Both spherulite types crystallize in the α form. The crystallite is biaxial with its greatest polarizability directions Z and Y oriented along the molecular chain and perpendicular to it in the plane of the terephthalate residue. In the normal spherulites, the [2 10]* direction is parallel to the radius direction, so that both Z and Y directions are oriented tangentially (negative spherulites). In the abnormal spherulites, the [1 11]* direction is parallel to the radius, and this explains the observed abnormal light scattering pattern.  相似文献   

7.
Enzymatic degradation of poly(octamethylene suberate) single crystals was investigated by electron microscopy. Different lamellar morphologies were obtained using 2.5-hexanediol as a solvent and at a temperature between 42 and 51 °C. Crystals with a different degree of truncation and with monolayer or bilayer organization were analyzed. Lipases from Rhizopus oryzae were found to be highly effective in degrading crystalline domains and showed different attack mechanisms. Thus, enzymes preferentially attacked the lateral crystal growth faces or the lamellar fold surfaces depending on the crystallization conditions. Temperature and indeed its fluctuation during the crystallization process were crucial to determine how degradation started and progressed. The most interesting results were obtained for single crystals characterized by a low degree of truncation and formed in crystallization baths with a small temperature oscillation. In this case, it was shown that degradation started on the folding surface of specific sectors and progressed along a preferred crystal direction.  相似文献   

8.
Morphology development and growth process of spherulites in miscible poly(ethylene succinate)/poly(ethylene oxide) blends are studied by means of polarizing optical microscopy and atom force microscopy in this paper. Thin films with different film thicknesses were used to follow the growth processes of spherulites and dendrites. It is shown that, when one component spherulite grows, the other component in the melt is always excluded from the spherulite. The excluded component may reenter into the spherulite through diffusion depending on amorphous volume fraction of spherulite and segmental mobility of molecules, which leads to the occurrence of interpenetrated growth. This mechanism was analyzed in detail in this paper.  相似文献   

9.
A new aryl polyester, poly(pentamethylene terephthalate) (PPT) with five methylene groups in the repeat unit, was synthesized. Its multiple‐melting behavior and crystal structure were analyzed with differential scanning calorimetry and wide‐angle X‐ray diffraction. In addition, the spherulitic/lamellar morphology of melt‐crystallized PPT was investigated. Typical Maltese‐cross spherulites (with no rings) were seen in melt‐crystallized PPT at low temperatures (70–90 °C), but ring patterns were seen in PPT crystallized only at temperatures ranging from 100 to 115 °C, whereas rings disappeared with crystallization above 120 °C. The mechanisms of the rings in PPT were explained with several coordinated directional changes (wavy changes, twisting changes, and combinations) in the lamellae during growth. Scanning electron microscopy, in combination with atomic force microscopy, further proved that the ringed spherulites originated from the aggregation of sufficient numbers of edge‐on lamellar crystals; the radial‐growth edge‐on/flat‐on lamellae could be twisted and/or waved to form realistic band patterns. A postulated model properly described a possible origin of the ring bands through combined mechanisms of waving (zigzagging) and twisting (spiraling) of the lamellae during crystallization. Superimposed twisting and/or wavy models during crystallization were examined as examples. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4421–4432, 2004  相似文献   

10.
Some rather unusual optical morphologies in thin films of poly(hydroxybutyrate) in which a temperature gradient is imposed across the thickness of the film are reported. Spherulites in which the Maltese cross degenerates into a continuous spiral grow under these conditions, and the direction of the rotation of the spirals depends on the direction of heating. These morphologies are explained with the existing understanding of spherulite optics. The helicoidally twisting crystallites are modeled as twisting around an axis at a fixed angle to the radius of the spherulite (and the plane of the film). The possible implications for future, inclusive models of banding in spherulites are discussed. Further observations on the temperature dependence of the optical banding pattern in poly(hydroxybutyrate) are also reported, and an unexpected minimum in band spacing and fine optically visible fibrillar texture is discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1575–1583, 2000  相似文献   

11.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

12.
The isothermal crystallization process of a PCL/SAN blend (90/10 wt.-%) was investigated by using real time image analysis and hot stage optical microscopy. It was found that the growth rate of ringbanded spherulites in the isothermal crystallization process is not constant. Slow growth occurs in the bright bands, while fast growth is found in the dark bands. The radially unequal growth rate of ring-banded spherulites in PCL/SAN blends may be related to the convex band structure on the surface. This new discovery gives us the idea that rhythmic growth is effective in the growth process of ring-banded spherulites.  相似文献   

13.
Pressure effect on the melting behavior of poly(butylene terephthalate) (PBT) and poly(hexamethylene terephthalate) (PHT) was studied by high‐pressure DTA (HP‐DTA) up to 320 and 530 MPa, respectively. Cooling rate dependence on the DSC melting curves of the samples cooled from the melt was shown at atmospheric pressure. Stable and metastable samples were prepared by cooling from the melt at low and normal cooling rates, respectively. DTA melting curves for the stable samples showed a single peak, and the peak profile did not change up to high pressure. Phase diagrams for PBT and PHT were newly determined. Fitting curves of melting temperature (Tm) versus pressure expressed by quadratic equation were obtained. Pressure coefficients of Tm at atmospheric pressure, dTm/dp, of PBT and PHT were 37 and 33 K/100 MPa, respectively. HP‐DTA curves of the metastable PBT showed double melting peaks up to about 70 MPa. In contrast, PHT showed them over the whole pressure region. HP‐DTA of stable poly(ethylene terephthalate) (PET) was also carried out up to 200 MPa, and the phase diagram for PET was determined. dTm/dp for PET was 49 K/100 MPa. dTm/dp increased linearly with reciprocal number of ethylene unit. The decrease of dTm/dp for poly(alkylene terephthalate) with increasing a segmental fraction of an alkyl group in a whole molecule is explained by the increase of entropy of fusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 262–272, 2000  相似文献   

14.
A rare case of thermodynamic miscibility has been demonstrated in the amorphous state (quenched glass as well as molten state) of a ternary blend system formed by poly(ether imide) and semicrystalline poly(ethylene terephthalate) and poly-(butylene terephthalate). A single glass transition temperature (Tg) in the ternary blends was observed using differential scanning calorimetry and dynamic mechanical analysis.  相似文献   

15.
Summary Small angle X-ray studies and density measurements were carried out on isotropic PET and PBT samples. PET samples were crystallized between 60 and 260 °C, and PBT between 60 and 225 °C. The aim of these studies was to investigate the dependence of the amorphous density, the degree of crystallinity and the average transmission path through the regions of the two-phase system on the crystallization temperature. It could be shown that PET and PBT crystallize with sharp phase boundaries.Since for the evaluation of the amorphous density the knowledge the exact crystal density is very important, additional measurements of the wide angle X-ray behaviour were made. Both the crystal and the amorphous densities of PET and PBT show specific differences dependent on the crystallization temperature, which can be explained by the higher mobility of the PBT chain.The degrees of crystallization, evaluated with the individual values of crystal density and amorphous density determined on each sample, are principally higher than those calculated with the usually used values of crystal and amorphous density. Investigations of the background scattering have shown that both the specific amorphous and specific crystalline scattering background are constant.For PET and PBT the average transmission path through the amporhous regions firstly decreases with increasing crystallization temperature. This can be explained by new formation of crystallites. At higher crystallization temperatures increases. The average transmission path through the crystalline regions increases over the whole range of crystallization temperature.
Zusammenfassung An isotropen PET- und PBT-Proben, kristallisiert bei Temperaturen zwischen 60 und 260 °C bzw. 60 und 225 °C wurden Röntgenkleinwinkel- und Dichtemessungen durchgeführt, mit dem Ziel, die amorphe Dichte, die Volumenanteile und die mittleren Durchschußlängen durch die Phasen in Abhängigkeit von der Kristallisationstemperatur zu bestimmen.Da für die Bestimmung der amorphen Dichte die Kenntnis der genauen Kristalldichte sehr wichtig ist, wurden zusätzliche Röntgenweitwinkelmessungen durchgeführt.Es konnte gezeigt werden, daß sowohl PBT als auch PET mit scharfen Phasengrenzen kristallisiert.Die Kristalldichte und die amorphe Dichte von PET bzw. PBT zeigen in Abhängigkeit von der Kristallisations-temperatur spezifische Unterschiede, die durch die höhere Beweglichkeit der PBT-Kette erklärt werden können.Die Kristallisationsgrade, die mit den von uns bestimmten Kristalldichten und amorphen Dichten ermittelt wurden, liegen generell höher als die mit den bekannten Werten von c und a berechneten. Untersuchungen des Streuuntergrundes zeigten, daß sowohl der spezifische amorphe als auch der spezifische kristalline Streuuntergrund konstant ist.Bei PET und PBT nehmen die mittleren Durchschußlängen durch die amorphen Phasenanteile bei geringen Kristallisationstemperaturen ab, was durch die Neubildung von Kristalliten erklärt wird, und nehmen bei höheren Kristallisationstemperaturen wieder zu.Die mittleren Durchschußlängen durch die kristallinen Phasenanteile nehmen über den gesamten Temperaturbereich zu.


With 22 figures and 3 tables  相似文献   

16.
Blends of PBT with PET or PC were studied by X-ray diffraction and DSC for different conditions of crystallization. PBT and PET crystallize very similarly, though they are recognized as partially compatible in the melt. In the PBT/PC blends X-ray diffraction examinations show crystallization of PC after 4 h of annealing. In the melt, both components are compatible. Tg-calculations indicate a plasticizing effect. In both kinds of blends, PBT crystallizes faster than PC or PET. Fast crystallization processes were examined by X-ray diffraction measurements with synchrotron radiation.  相似文献   

17.
The photolysis of poly(ethylene terephthalate) films was studied in vacuo with light of wavelengths 2537 and 3130 A. A very stable filter system which cuts out the 3025 A. line was developed to isolate 3130 A. from a mercury spectrum. Despite the fact that the penetration of 2537 A. light was limited to a depth of a ca. 103 A. whereas 3130 A. light was more uniformly absorbed it was possible to demonstrate that the quantum yields for CO and CO2 formation were in agreement for the two wavelengths. Quantum yields for fractures and crosslinks were estimated by sol-gel analysis. An absorption maximum which develops near 13 μ after exposure of poly(ethylene terephthalate) to light or γ-rays was attributed to the formation of groups formed by elimination of CO and CO2. ESR spectra for trapped radicals were tentatively assigned to the components p-C6H3· and ·O? CH2? CH2? . It is suggested that the former radicals combine to form crosslinks. Quantum yields (× 104) with 3130 A. light are: CO, 6; CO2, 2; crosslinks, 5.5; trapped radicals, 1.5; With 2537 A. light, quantum yields are: CO, 6–9; CO2, 2–3; the network formed was not characterized as to crosslinks and fractures; trapped radicals were observed to exist but not determined.  相似文献   

18.
Subtle crystalline structure changes of poly(butylene terephthalate) (PBT) specimens treated with an alkali solution at room temperature were investigated with the grazing incidence X-ray diffraction (GIXRD) analysis method. A new phenomenon was found: the aqueous alkali solution induced the crystallization of the PBT polymer. Under the GIXRD analysis condition of an incidence angle of 1°, the penetration depth of the X-ray in PBT was less than 80 μm, and this agreed well with the rough theoretical estimation. The alkali solution adopted in this study was an aqueous sodium hydroxide solution, which had a concentration of 2.5 N. Dissolved quantities of the surface layers during the alkaline treatment were found to be small. No appreciable intrinsic viscosity change due to the alkaline treatment was detected. Possible factors that might contribute to the crystallization, such as water absorption and a chemical reagent effect, were examined, and a plausible explanation for the phenomenon was developed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1938–1948, 2004  相似文献   

19.
20.
A new molecular mechanism for the healing phenomenon in semicrystalline linear polycondensates (healing resulting from chemical reactions between macromolecules located in the interfacial surface) is demonstrated. Strips of commercial poly(ethylene terephthalate) are annealed at 258°C in order to avoid melt sticking. Two such strips are partially overlapped, pressed, and heated in a vacuum at 240°C for 10, 20, 30, and 100 h. By measuring the stress at break outside the contact area and the debonding shear stress the critical overlapping length is computed. It is concluded that transreaction contributes more than solid-state post-condensation to chemical healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号