首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Averaging techniques are popular tools in adaptive finite element methods since they provide efficient a posteriori error estimates by a simple postprocessing. In the second paper of our analysis of their reliability, we consider conforming -FEM of higher (i.e., not of lowest) order in two or three space dimensions. In this paper, reliablility is shown for conforming higher order finite element methods in a model situation, the Laplace equation with mixed boundary conditions. Emphasis is on possibly unstructured grids, nonsmoothness of exact solutions, and a wide class of local averaging techniques. Theoretical and numerical evidence supports that the reliability is up to the smoothness of given right-hand sides.

  相似文献   


2.
赵卫东 《计算数学》2000,22(1):83-96
1.引言多孔介质二相驱动问题的数学模型是偶合的非线性偏微分方程组的初边值问题.该问题可转化为压力方程和浓度方程[1-4].浓度方程一般是对流占优的对流扩散方程,它的对流速度依赖于比浓度方程的扩散系数大得多的Farcy速度.因此Darcy速度的求解精度直接影响着浓度的求解精度.为了提高速度的求解精度,70年代P.A.Raviat和J.M.Thomas提出混合有限元方法[5].J.DouglasJr,T.F.Russell,R.E.Ewing,M.F.Wheeler[1]-[4],[9],[12]袁…  相似文献   

3.
In this article we study two families of multiscale methods for numerically solving elliptic homogenization problems. The recently developed multiscale finite element method [Hou and Wu, J Comp Phys 134 (1997), 169–189] captures the effect of microscales on macroscales through modification of finite element basis functions. Here we reformulate this method that captures the same effect through modification of bilinear forms in the finite element formulation. This new formulation is a general approach that can handle a large variety of differential problems and numerical methods. It can be easily extended to nonlinear problems and mixed finite element methods, for example. The latter extension is carried out in this article. The recently introduced heterogeneous multiscale method [Engquist and Engquist, Comm Math Sci 1 (2003), 87–132] is designed for efficient numerical solution of problems with multiscales and multiphysics. In the second part of this article, we study this method in mixed form (we call it the mixed heterogeneous multiscale method). We present a detailed analysis for stability and convergence of this new method. Estimates are obtained for the error between the homogenized and numerical multiscale solutions. Strategies for retrieving the microstructural information from the numerical solution are provided and analyzed. Relationship between the multiscale finite element and heterogeneous multiscale methods is discussed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this article, we use a splitting positive definite mixed finite element procedure to solve the second‐order hyperbolic equation. We analyze the superconvergence property of the mixed element methods with discrete‐time approximation for the hyperbolic equation. Some numerical examples are presented to illustrate our theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 175–186, 2014  相似文献   

5.
By using a special interpolation operator developed by Girault and Raviart (finite element methods for Navier‐Stokes Equations, Springer‐Verlag, Berlin, 1986), we prove that optimal error bounds can be obtained for a fourth‐order elliptic problem and a fourth‐order parabolic problem solved by mixed finite element methods on quasi‐uniform rectangular meshes. Optimal convergence is proved for all continuous tensor product elements of order k ≥ 1. A numerical example is provided for solving the fourth‐order elliptic problem using the bilinear element. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

6.
考虑裂缝 孔隙介质中地下水污染问题均匀化模型的数值模拟.对压力方程采用混合元方法,对浓度方程采用Galerkin交替方向有限元方法,对吸附浓度方程采用标准Galerkin方法,证明了交替方向有限元格式具有最优犔2 和犎1 模误差估计.  相似文献   

7.
1 IntroductionInrecentyears,theintentionaloraccidentalreleaseofthechemicalwastesonsoilshasfurtherstimulatedcurrentinterestsinthemovementofchemicals.Displacementstudieshavebecomeimportanttoolsinsoilphysics,particularlyforpredictingthemovementofpestcides…  相似文献   

8.
This paper studies mixed finite element approximations to the solution of the viscoelasticity wave equation. Two new transformations are introduced and a corresponding system of first‐order differential‐integral equations is derived. The semi‐discrete and full‐discrete mixed finite element methods are then proposed for the problem based on the Raviart–Thomas–Nedelec spaces. The optimal error estimates in L2‐norm are obtained for the semi‐discrete and full‐discrete mixed approximations of the general viscoelasticity wave equation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
对流扩散方程一类改进的特征线修正有限元方法   总被引:5,自引:1,他引:4  
1引言在地下水污染,地下渗流驱动,核污染,半导体等问题的数值模拟中,均涉及抛物型对流扩散方程(或方程组)的数值求解问题.这些对流扩散型偏微分方程(或方程组)具有共同的特点:对流的影响远大于扩散的影响,即对流占优性,对流占优性给问题的数值求解带来许多困难,因此对流占优问题的有效数值解法一直是计算数学中重要的研究内容.用通常的差分法或有限元法进行数值求解将出现数值振荡.为了克服数值振荡,提出各种迎风方法和修正的特征方法并在这些问题上得到成功的实际应用、80年代,Douglas和Russell[2]等…  相似文献   

10.
构造具有广义边界条件的四阶线性抛物型方程的混合间断时空有限元格式,利用混合有限元方法将高阶方程降阶,利用空间连续而时间允许间断的时空有限元方法离散方程,证明了离散解的存在唯一性,稳定性和收敛性,并给出数值算例验证了方法的有效性.  相似文献   

11.
An H1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.  相似文献   

12.
In this article, we construct an a posteriori error estimator for expanded mixed hybrid finite‐element methods for second‐order elliptic problems. An a posteriori error analysis yields reliable and efficient estimate based on residuals. Several numerical examples are presented to show the effectivity of our error indicators. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 330–349, 2007  相似文献   

13.
Currently used finite volume methods are essentially low order methods. In this paper, we present a systematic way to derive higher order finite volume schemes from higher order mixed finite element methods. Mostly for convenience but sometimes from necessity, our procedure starts from the hybridization of the mixed method. It then approximates the inner product of vector functions by an appropriate, critical quadrature rule; this allows the elimination of the flux and Lagrange multiplier parameters so as to obtain equations in the scalar variable, which will define the finite volume method. Following this derivation with different mixed finite element spaces leads to a variety of finite volume schemes. In particular, we restrict ourselves to finite volume methods posed over rectangular partitions and begin by studying an efficient second-order finite volume method based on the Brezzi–Douglas–Fortin–Marini space of index two. Then, we present a general global analysis of the difference between the solution of the underlying mixed finite element method and its related finite volume method. Then, we derive finite volume methods of all orders from the Raviart–Thomas two-dimensional rectangular elements; we also find finite volume methods to associate with BDFM 2 three-dimensional rectangles. In each case, we obtain optimal error estimates for both the scalar variable and the recovered flux.  相似文献   

14.
In this paper, based on the natural boundary reduction advanced by Feng and Yu, we couple the finite element approach with the natural boundary element method to study the weak solvability and Galerkin approximation of a class of nonlinear exterior boundary value problems. The analysis is mainly based on the variational formulation with constraints. We prove the error estimate of the finite element solution and obtain  相似文献   

15.
For the transient behavior of a semiconductor device, the modified method of characteristics with mixed finite element domain decomposition procedures applicable to parallel arithmetic is put forward. The electric potential equation is described by the mixed finite element method, and the electric, hole concentration and heat conduction equations are treated by the modified method of characteristics finite element domain decomposition methods. Some techniques, such as calculus of variations, domain decomposition, characteristic method, energy method, negative norm estimate and prior estimates and techniques are employed. Optimal order estimates in L2 norm are derived for the error in the approximation solution. Thus the well‐known theoretical problem has been thoroughly and completely solved.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 353–368 2012  相似文献   

16.
A two-grid finite element approximation is studied in the fully discrete scheme obtained by discretizing in both space and time for a nonlinear hyperbolic equation. The main idea of two-grid methods is to use a coarse-grid space ($S_H$) to produce a rough approximation for the solution of nonlinear hyperbolic problems and then use it as the initial guess on the fine-grid space ($S_h$). Error estimates are presented in $H^1$-norm, which show that two-grid methods can achieve the optimal convergence order as long as the two different girds satisfy $h$ = $\mathcal{O}$($H^2$). With the proposed techniques, we can obtain the same accuracy as standard finite element methods, and also save lots of time in calculation. Theoretical analyses and numerical examples are presented to confirm the methods.  相似文献   

17.
Mixed finite element methods are considered for a ferrofluid flow model with magnetization paralleled to the magnetic field. The ferrofluid model is a coupled system of the Maxwell equations and the incompressible Navier-Stokes equations. By skillfully introducing some new variables, the model is rewritten as several decoupled subsystems that can be solved independently. Mixed finite element formulations are given to discretize the decoupled systems with proper finite element spaces. Existence and uniqueness of the mixed finite element solutions are shown, and optimal order error estimates are obtained under some reasonable assumptions. Numerical experiments confirm the theoretical results.  相似文献   

18.
We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive than applying the least-squares mixed finite element method. Dedicated to Ivan Hlaváček on the occasion of his 75th birthday  相似文献   

19.
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.

  相似文献   


20.
In this paper, we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by $H^{1}$-Galerkin mixed finite element methods. We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization, and backward Euler scheme for temporal discretization. Firstly, a priori error estimates and some superclose properties are derived. Secondly, a two-grid scheme is presented and its convergence is discussed. In the proposed two-grid scheme, the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy. Finally, a numerical experiment is implemented to verify theoretical results of the proposed scheme. The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice $h=H^2$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号