首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Katayama  K Miyajima  M Ashida  T Itoh 《J Phys Condens Matter》2012,24(32):325801, 1-325801, 6
In Cd(0.8)Mn(0.2)Te, nonlinear photoluminescence (PL) appears only when localized excitons are selectively excited to high-density states. Here, the effect of a magnetic field is compared between nonlinear PL and PL due to localized magnetic polarons. Nonlinear PL shows a shift towards lower energy under an applied magnetic field, whereas PL of a localized magnetic polaron band shows a slight shift towards higher energy. The experimental results support the hypothesis that the origin of the nonlinear PL is a spin-aligned state of high-density exciton magnetic polarons. In the spin-aligned state, most spins of electrons (holes) in many magnetic polarons point in the same direction. In this new high-density photoexcited state, the s, p-d exchange interaction between photoexcited electrons (holes) and magnetic ions plays an important role.  相似文献   

2.
It has been shown that localized and semi-localized stationary states exist near a thin structured defect layer between a linear medium and a Kerr nonlinear medium. Localized states are described by a monotonically decreasing amplitude of the field on the both sides of the interface between the media. Semilocalized states are characterized by the field that has the form of a standing wave in the linear medium and decreases monotonically in the nonlinear medium. Kerr media with self-focusing and defocusing are considered. The proposed model is described by a system of the linear and nonlinear Schrödinger equations with a specific potential simulating a thin structured defect layer. It has been shown that localized and semi-localized states exist in different energy ranges in the case of contact of the linear medium with the self-focusing medium. In the case of contact of the linear medium with the defocusing medium, two types of localized and semi-localized states differing in energy and field profile can exist in different energy ranges. In particular cases, expressions for energies of states of these types have been obtained and conditions of their applicability have been indicated.  相似文献   

3.
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.  相似文献   

4.
We show that the balance between localized gain and nonlinear cubic dissipation in the two-dimensional nonlinear Schr?dinger equation allows for the existence of stable localized modes that we identify as solitons. Such modes exist only when the gain is strong enough and the energy flow exceeds certain threshold value. Above the critical value of the gain, symmetry breaking occurs and asymmetric dissipative solitons emerge.  相似文献   

5.
In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schr?dinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.  相似文献   

6.
The movement and relaxation of the localized energy on FPU lattices have been studied by using Wavelet transforms methods. The energy relaxation mechanism for nonlinear chains involves the degradation of higher frequency excitations into lower frequencies. It is shown that low frequency modes decay more slowly in nonlinear chains. The wavelet spectrum exhibits a behavior involving the interplay of phonon modes and breather modes.  相似文献   

7.
We study the trapping process of moving discrete solitons by linear and nonlinear impurities embedded in a one-dimensional nonlinear cubic array. We show that there exist specific values for the strength of the impurity and for the angle where a strong trapping is obtained. We introduce a criterion for studying the scattering dynamics of localized waves in nonlinear extended systems where the trapping of energy takes place.  相似文献   

8.
冯天闰  卢克清  陈卫军  刘书芹  牛萍娟  于莉媛 《物理学报》2013,62(23):234205-234205
报道了中心对称光折变晶体与线性电介质界面表面波的形成及能量变化. 通过调节传播常数和波导参数的方法,可以得到非局域、振荡、局域三种类型的表面波. 波导参数和传播常数之差大于阈值时,线性电介质和中心对称光折变晶体界面可以形成局域表面波. 波导参数为正值时,局域表面波主要聚集在中心对称光折变晶体内,随着传播常数的增大,波能量随之单调递增,表面波可以稳定传播. 在给定的条件下,调节决定非线性作用强度的可变参量可以控制局域表面波模的阶数和传播波形. 关键词: 非线性光学 中心对称光折变晶体 表面波  相似文献   

9.
Exact plane-symmetric solutions of the spinor-field equation with zero mass parameter and nonlinear term that depends arbitrarily on the S2−P2 invariant are derived with consideration of an intrinsic gravitational field. The existence of regular solutions with localized energy density among the solutions obtained is investigated. Equations with powerlaw and polynomial nonlinearity types are examined in detail. For the power-law nonlinearity, when the nonlinear term entering into the Lagrangian has the form LN=γIn, where γ is the nonlinearity parameter and n=const, it is shown that the initial system of Einstein and spinor-field equations has regular solutions with localized energy density only under the conditions λ=−Λ2 < 0, n > 1. In this case, the examined field configuration posesses a negative energy. In the case of polynomial nonlinearity, regular solutions with localized energy density T 0 0 (x), positive energy (upon integration over y and z between finite limits), and an everywhere regular metric that transforms into a two-dimensional space-time metric at spatial infinity are obtained. It is shown that the initial nonlinear spinor-field equations in two-dimensional space-time have no solutions with localized energy density. Thus, it is established that the intrinsic gravitational field plays a regularizing role in the frmation of regular localized solutions to the examined nonlinear spinor-field equations. Russian University of People's Friendship. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 12–19, November, 1999.  相似文献   

10.
We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear Schr?dinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial conditions such that the second moment of the norm and energy density distributions diverges with time. We find that the participation number of a wave packet does not diverge simultaneously. We prove this result analytically for norm-conserving models and strong enough nonlinearity. After long times we find a distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic dynamics. Assuming this result holds for any initially localized wave packet, we rule out the possibility of slow energy diffusion. The dynamical state could approach a quasiperiodic solution (Kolmogorov-Arnold-Moser torus) in the long time limit.  相似文献   

11.
Coupled backward and forward wave amplitudes of an electromagnetic field propagating in a periodic and nonlinear medium at Bragg resonance are governed by the nonlinear coupled mode equations (NLCME). This system of PDEs, similar in structure to the Dirac equations, has gap soliton solutions that travel at any speed between 0 and the speed of light. A recently considered strategy for spatial trapping or capture of gap optical soliton light pulses is based on the appropriate design of localized defects in the periodic structure. Localized defects in the periodic structure give rise to defect modes, which persist as nonlinear defect modes as the amplitude is increased. Soliton trapping is the transfer of incoming soliton energy to nonlinear defect modes. To serve as targets for such energy transfer, nonlinear defect modes must be stable. We therefore investigate the stability of nonlinear defect modes. Resonance among discrete localized modes and radiation modes plays a role in the mechanism for stability and instability, in a manner analogous to the nonlinear Schrödinger/Gross-Pitaevskii (NLS/GP) equation. However, the nature of instabilities and how energy is exchanged among modes is considerably more complicated than for NLS/GP due, in part, to a continuous spectrum of radiation modes which is unbounded above and below. In this paper we (a) establish the instability of branches of nonlinear defect states which, for vanishing amplitude, have a linearization with eigenvalues embedded within the continuous spectrum, (b) numerically compute, using Evans function, the linearized spectrum of nonlinear defect states of an interesting multiparameter family of defects, and (c) perform direct time-dependent numerical simulations in which we observe the exchange of energy among discrete and continuum modes.  相似文献   

12.
We find exact localized time-periodic solutions with frequencies inside the linearized spectrum [intraband discrete breathers (IDBs)] in random nonlinear models using a new self-consistent method. The IDB frequencies belong to intervals between forbidden gaps generated by resonances with the linear modes, becoming fat Cantor sets in infinite systems. When localized IDBs are continued versus frequency, they delocalize and become multisite IDBs (not predicted by existing theorems), which can propagate energy. Some implications for energy relaxation in glasses are discussed.  相似文献   

13.
应用质点振荡模型和数值模拟方法研究了在金属与光折变晶体界面形成表面波的条件及其能量变化. 结果表明: 传播常数的正负影响表面波的类型及波能量分布, 当传播常数取负值时在界面处形成非局域表面波, 取正值时在界面处形成振荡表面波和局域表面波, 局域表面波的能量随传播常数的变大而单调递增. 在一给定的物理系统中, 可通过调节决定非线性效应强度的可变参量控制不同阶数局域表面波模及其传播波形.  相似文献   

14.
A soliton-like time-dependent solution in the form of a running wave is derived of a self-consistent system of the gravitational field equations of Einstein and Born-Infeld type of equations of a nonlinear scalar field in a conformally flat metric. This solution is localized in space and possesses a localized energy. It is shown that both the gravitational field and the nonlinearity of the scalar field are essential to the presence of such a localized solution. In recent years various classical particle models have been widely discussed which are static or time-independent solutions of nonlinear equations with localization in space and which possess a finite field energy. In particular, soliton solutions [1], solutions in the form of eddies [2], and so on have been derived and investigated. All these solutions were treated in a flat space-time. It is of interest to derive the analogous particle-like solutions with the gravitational field taken into account; in particular it is of interest to investigate the roles of the gravitational field in connection with the formation of localized objects. These problems have been discussed in [3] in the static case. We will present below a soliton-like time-dependent solution in the form of a solitary running wave as an example of the inter-action of a Born-Infeld type of nonlinear scalar field and an Einstein gravitational field in a conformally flat metric.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 12–17, May, 1979.  相似文献   

15.
Zou Y  Wang JG  Suk H  Reiser M 《Physical review letters》2000,84(22):5138-5140
We present experimental observations of the abnormal growth of localized nonlinear space-charge waves in space-charge dominated electron beams passing through a resistive channel. The energy width of the space-charge waves is measured on both ends of the channel. Previous experiments had shown that, for small initial perturbations, the energy width of the slow waves increases, while the energy width of the fast waves decreases, in agreement with linear theory. We report that in the nonlinear regime (large initial perturbations), the energy width of the fast wave increases, which is unexpected, and, to the best of our knowledge, no theory exists that would predict this phenomenon.  相似文献   

16.
考虑磁-声子耦合作用和磁子间相互作用,采用双子格模型和相干态表示,研究了自旋S=1/2反铁磁体KCuF3的非线性集体激发特性,求出了孤立子的能量和质量,并比较了磁性孤立子和局域性磁子激发能量。结果表明在一维反铁磁体KCuF3中发现孤立子激发是可能。  相似文献   

17.
Crack front waves are nonlinear localized waves that propagate along the leading edge of a crack. They are generated by both the interaction of a crack with a localized material inhomogeneity and the intrinsic formation of microbranches. Front waves are shown to transport energy, generate surface structure, and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to microbranch formation, yields both inhomogeneity and scaling behavior within the fracture surface structure.  相似文献   

18.
We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.  相似文献   

19.
考虑磁 -声子耦合作用和磁子间相互作用 ,采用双子格模型和相干态表示 ,研究了自旋S =1/2反铁磁体KCuF3 的非线性集体激发特性 ,求出了孤立子的能量和质量 ,并比较了磁性孤立子和局域性磁子激发能量。结果表明在一维反铁磁体KCuF3 中发现孤立子激发是可能。  相似文献   

20.
Exact static solutions of spinor-field equations with nonlinear terms that are arbitrary functions of the invariant S=ψψ are obtained in the external gravitational field of a Hedel universe. The specific type of nonlinear Lagrangian that produces regular and localized distributions of spinor-field energy density is discussed. Exact solutions of the original equations are also obtained in plane spacetime. Here it is shown that irrespective of the form of the nonlinear Lagrangian, the energy density of the spinor field is constant, i.e., there is no localization. This means that the external gravitational field of a Hedel universe has a definite role in forming soliton-like configurations of the nonlinear spinor field. Russian University of International Amity. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 111–116, July, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号