首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When the ligand 1,4,5-triazanaphthalene (abbreviated as tan) is reacted with Cu(II) BF(4)(-) and ClO(4)(-) salts, a variety of mononuclear compounds has been found, all with the [Cu(tan)(4)] unit and varying amounts of weakly coordinating axial ligands and lattice solvents. Reproducible compounds formed include two purple compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(CH(3)OH)(2)(H(2)O) (1) and [Cu(tan)(4)](BF(4))(2)(CH(3)OH)(1.5)(H(2)O) (3), and two blue compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(H(2)O)(2) (2) and [Cu(tan)(4)](2)(BF(4))(2)(H(2)O)(2) (4). Upon standing at room temperature, red-coloured, mixed-valence dinuclear-based 3D coordination polymers are formed by conversion of the purple/blue products, of which [Cu(2)(tan)(4)](n)(BF(4))(3n) (5) and the isomorphic methanol-water adduct [Cu(tan)(4)](n)(BF(4))(3n)(CH(3)OH)(n)(H(2)O)(5n) (5A) are presented in this paper. In addition a fully reduced dinuclear Cu(I) compound of formula [Cu(2)(tan)(3)(ClO(4))(2)] (7) has been observed, and structurally characterized, as a rare three-blade propeller structure, with a Cu-Cu distance of 2.504 ?.  相似文献   

2.
Interaction of PdCl(2)(MeCN)(2) with 2 equiv of (S(P))-(t)BuPhP(O)H (1H) followed by treatment with Et(3)N gave [Pd((1)(2)H)](2)(micro-Cl)(2) (2). Reaction of 2 with Na[S(2)CNEt(2)] or K[N(PPh(2)S)(2)] afforded Pd[(1)(2)H](S(2)CNEt(2)) (3) or Pd[(1)(2)H)[N(PPh(2)S)(2)] (4), respectively. Treatment of 3 with V(O)(acac)(2) (acac = acetylacetonate) and CuSO(4) in the presence of Et(3)N afforded bimetallic complexes V(O)[Pd(1)(2)(S(2)CNEt(2))](2) (5) or Cu[Pd(1)(2)(S(2)CNEt(2))](2) (6), respectively. X-ray crystallography established the S(P) configuration for the phosphinous acid ligands in 3 and 6, indicating that 1H binds to Pd(II) with retention of configuration at phosphorus. The geometry around Cu in 6 is approximately square planar with the average Cu-O distance of 1.915(3) A. Treatment of 2 with HBF(4) gave the BF(2)-capped compound [Pd((1)(2)BF(2))](2)(micro-Cl)(2) (7). The solid-state structure of 7 containing a PdP(2)O(2)B metallacycle has been determined. Chloride abstraction of 7 with AgBF(4) in acetone/water afforded the aqua compound [Pd((1)(2)BF(2))(H(2)O)(2)][BF(4)] (8) that reacted with [NH(4)](2)[WS(4)] to give [Pd((1)(2)BF(2))(2)](2)[micro-WS(4)] (9). The average Pd-S and W-S distances in 9 are 2.385(3) and 2.189(3) A, respectively. Treatment of [(eta(6)-p-cymene)RuCl(2)](2) with 1H afforded the phosphinous acid adduct (eta(6)-p-cymene)RuCl(2)(1H) (10). Reduction of [CpRuCl(2)](x)() (Cp = eta(5)-C(5)Me(5)) with Zn followed by treatment with 1H resulted in the formation of the Zn(II) phosphinate complex [(CpRu(eta(6)-C(6)H(5)))(t)BuPO(2))](2)(ZnCl(2))(2) (11) that contains a Zn(2)O(4)P(2) eight-membered ring.  相似文献   

3.
The novel pyridine-containing 14-membered macrocycle 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L), which contains an N2S2 donor set, was synthesized, and its protonation behavior was studied by absorption titration with CH3SO3H. The reaction of L with Pd(II) was studied spectroscopically, and the square-planar complex [Pd(L)](BF4) was isolated and characterized. The reactions between L and NiX2 x 6 H2O (X = BF4, ClO4) in ethanol or acetonitrile afforded the octahedral complexes [Ni(CH3CN)(H2O)(L)](X)2 and [Ni(H2O)2(L)](X)2, respectively. The square-planar complexes [Ni(L)](X)2 were obtained by heating these octahedral complexes. Spectrophotometric titrations of [Ni(L)](BF4)2 were performed with neutral and negatively charged ligands. The color of nitromethane solutions of this square-planar complex turns from red to cyan, purple, blue, yellow-green, and pink following addition of halides, acetonitrile, water, pyridine, and 2,2'-bipyridine, respectively. X-ray structural analyses were carried out on the {[Ni(ClO4)(H2O)(L)][Ni(H2O)2(L)]}(ClO4)3, [Ni(CH3CN)(H2O)(L)](ClO4)2, [{Ni(L)}2(mu-Cl)2](ClO4)2, and [{Ni(L)}2(mu-Br)2]Br2 x 2 CH3NO2 complexes.  相似文献   

4.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

5.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

6.
Xanthone-crown ether (1) reacts with NaClO(4), Mg(ClO(4))(2) and Al(ClO(4))(3) forming the one-dimensional chain dinuclear polymer [Na(2).1.(ClO(4))(2)] (2), the mononuclear complex [Mg.1.(H(2)O)(2)](ClO(4))(2) (3) and an interesting sandwich complex [Al.(1)(2).(H(2)O)(6)](ClO(4))(3) (4) with different ratios of metal-to-ligand, respectively. The anion recognition experiment results show that the magnesium complex (3) is a good colorimetric and fluorescent detector for HSO(4)(-) with high sensitivity and selectivity.  相似文献   

7.
The dimers [Cu(2)(dppm)(2)(CN-t-Bu)(3)](BF(4))(2) and [Ag(2)(dppm)(2)(CN-t-Bu)(2)](X)(2) (X(-) = BF(4)(-), ClO(4)(-)) and the coordination polymers [[M(diphos)(CN-t-Bu)(2)]BF(4)](n) (M = Cu, Ag; diphos = bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)pentane (dpppen), bis(diphenylphosphino)hexane (dpph)), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), and [[Ag(dpppen)(CN-t-Bu)]BF(4)](n) have been synthesized and fully characterized as model materials for the mixed bridging ligand polymers which exhibit the general formula [[M(diphos)(dmb)]BF(4)](n) (M = Cu, Ag; dmb = 1,8-diisocyano-p-menthane) and [[Ag(dppm)(dmb)]ClO(4)](n). The identity of four polymers ([[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) (x = 1, 2), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), [[Ag(dppm)(dmb)]ClO(4)](n)) and the two dimers has been confirmed by X-ray crystallography. The structure of [[Ag(dppm)(dmb)]ClO(4)](n) exhibits an unprecedented 1-D chain of the type "[Ag(dmb)(2)Ag(dppm)(2)(2+)](n)", where d(Ag(.)Ag) values between tetrahedral Ag atoms are 4.028(1) and 9.609(1) A for the dppm and dmb bridged units, respectively. The [[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) polymers (x = 1, 2) form zigzag chains in which the Ag atoms are tri- and tetracoordinated, respectively. The [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n) polymer, which is produced from the rearrangement of [[Ag(dppb)(CN-t-Bu)(2)]BF(4)](n), forms a 2-D structure described as a "honeycomb" pattern, where large [Ag(dppb)(+)](6) macrocycles each hosting two counterions and two acetonitrile guest molecules are observed. Properties such as glass transition temperature, morphology, thermal decomposition, and luminescence in the solid state at 293 K are reported. The luminescence bands exhibit maxima between 475 and 500 nm with emission lifetimes ranging between 6 and 55 micros. These emissions are assigned to a metal-to-ligand charge transfer (MLCT) of the type M(I) --> pi(NC)/pi(PPh(2)).  相似文献   

8.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

9.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

10.
The potentially bis-terdentate diamide ligand N,N'-bis[2-(2-pyridyl)ethyl]pyrazine-2,3-dicarboxamide (H(2)L(Et)) was structurally characterised. Potentiometric titrations revealed rather low pK(a) values for the deprotonation of the first amide group of H(2)L(Et) (14.2) and N,N'-bis(2-pyridylmethyl)pyrazine-2,3-dicarboxamide (H(2)L(Me), 13.1). Two tetranuclear copper(ii) square complexes of H(2)L(Et) with a paddle-wheel appearance, in which each ligand strand acts as a linear N(3)-NO hybrid terdentate-bidentate chelate, have been isolated and structurally characterised. Complex [Cu(II)(4)(H(2)L(Et))(2)(HL(Et))(2)](BF(4))(6).3MeCN.0.5H(2)O (.3MeCN.0.5H(2)O), with two nondeprotonated zwitterionic ligand strands and two monodeprotonated ligand strands, is formed in the 1 : 1 reaction of H(2)L(Et) and Cu(BF(4))(2).4H(2)O. It has a polymeric chain structure of tetranuclear subunits connected by N-H[dot dot dot]N hydrogen bonds. The same reaction carried out with one equivalent of base gives the related compound [Cu(II)(4)(HL(Et))(4)](BF(4))(4) (), with all four ligand strands monodeprotonated. It consists of isolated tetranuclear units. In both .3MeCN.0.5 H(2)O and the copper(ii) ions are in five-coordinate N(4)O environments but the degree of trigonality (tau) differs [.3MeCN.0.5H(2)O 0.14 相似文献   

11.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

12.
Two new fluorescent chemosensors for metal ions have been synthesized and characterized, and their photophysical properties have been explored; they are the macrocycles 5-(2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L5) and 5-(5-chloro-8-hydroxyquinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L6). Both systems have a pyridyl-thioether-containing 12-membered macrocycle as a binding site. The coordination properties of these two ligands toward CuII, ZnII, CdII, HgII, and PbII have been studied in MeCN/H2O (1:1 v/v) and MeCN solutions and in the solid state. The stoichiometry of the species formed at 25 degrees C have been determined from absorption, fluorescence, and potentiometric titrations. The complexes [CuL5](ClO4)(2).1/2MeCN, [ZnL5(H2O)](ClO4)2, [HgL5(MeCN)](ClO4)2, [PbL5(ClO4)2], [Cu3(5-Cl-8-HDQH-1)(L6H-1)2](ClO4)(3).7.5H2O (HDQ=hydroxyquinoline), and [Cu(L6)2](BF4)(2).2MeNO2 have also been characterized by X-ray crystallography. A specific CHEF-type response of L5 and L6 to the presence of ZnII and CdII, respectively, has been observed at about pH 7.0 in MeCN/H2O (1:1 v/v) solutions.  相似文献   

13.
Strapping two salicylaldoxime units together with aliphatic α,Ω-aminomethyl links in the 3-position gives ligands which allow the assembly of the polynuclear complexes [Fe(7)O(2)(OH)(6)(H(2)L1)(3)(py)(6)](BF(4))(5)·6H(2)O·14MeOH (1·6H(2)O·14MeOH), [Fe(6)O(OH)(7)(H(2)L2)(3)](BF(4))(3)·4H(2)O·9MeOH (2·4H(2)O·9MeOH) and [Mn(6)O(2)(OH)(2)(H(2)L1)(3)(py)(4)(MeCN)(2)](BF(4))(5)(NO(3))·3MeCN·H(2)O·5py (3·3MeCN·H(2)O·5py). In each case the metallic skeleton of the cluster is based on a trigonal prism in which two [M(III)(3)O] triangles are tethered together via three helically twisted double-headed oximes. The latter are present as H(2)L(2-) in which the oximic and phenolic O-atoms are deprotonated and the amino N-atoms protonated, with the oxime moieties bridging across the edges of the metal triangles. Both the identity of the metal ion and the length of the straps connecting the salicylaldoxime units have a major impact on the nuclearity and topology of the resultant cluster, with, perhaps counter-intuitively, the longer straps producing the "smallest" molecules.  相似文献   

14.
The synthesis and characterization of three heteronuclear Pt(2)Pd(2) (4, 5) and PtPd(2) (6) complexes of the model nucleobase 9-methyladenine (9-MeA) is reported. The compounds were prepared by reacting [Pt(NH(3))(3)(9-MeA-N7)](ClO(4))(2) (1) with [Pd(en)(H(2)O)(2)](ClO(4))(2) at different ratios r between Pt and Pd, with the goal to probe Pd(II) binding to any of the three available nitrogen atoms, N1, N3, N6 or combinations thereof. Pd(II) coordination occurs at N1 and at the deprotonated N6 positions, yet not at N3. 4 and 5 are isomers of [{(en)Pd}(2){N1,N6-9-MeA(-)-N7)Pt(NH(3))(3)}(2)](ClO(4))(6)·nH(2)O, with a head-head orientation of the two bridging 9-MeA(-) ligands in 4 and a head-tail orientation in 5. 6 is [{(en)Pd}(2)(OH)(N1,N6-9MeA(-)-N7)Pt(NH(3))(3)](ClO(4))(4)·4H(2)O, hence a condensation product between [Pt(NH(3))(3)(9-MeA-N7)](2+) and a μ-OH bridged dinuclear (en)Pd-OH-Pd(en) unit, which connects the N1 and N6 positions of 9-MeA(-) in an intramolecular fashion. 4 and 5, which slowly interconvert in aqueous solution, display distinct structural differences such as significantly different intramolecular Pd···Pd contacts (3.124 0(16) ? in 4; 2.986 6(14) ? in 5), among others. Binding of (en)Pd(II) to the exocyclic N6 atom in 4 and 5 is accompanied by a large movement of Pd(II) out of the 9-MeA(-) plane and a trend to a further shortening of the C6-N6 bond as compared to free 9-MeA. The packing patterns of 4 and 5 reveal substantial anion-π interactions.  相似文献   

15.
Wang X  Vittal JJ 《Inorganic chemistry》2003,42(17):5135-5142
The influences of the nature of reactants and water on the self-assembly of cationic Cu(II) complex structures containing N-(2-pyridylmethyl)glycine (Hpgly) and N-(2-pyridylmethyl)-l-alanine (Hpala) ligands have been investigated. A metallamacrocycle [Cu(6)(pgly)(3)(spgly)(3)] (ClO(4))(6).9H(2)O has been formed by the reaction of [Cu(pgly)(2)].2H(2)O with Cu(ClO(4))(2).6H(2)O. The hexameric cation has Schiff base and reduced Schiff base ligands alternatively bonded to Cu(II) to provide cyclohexane-like conformation with a cavity diameter of 9.4 A. The reaction of Cu(ClO(4))(2).6H(2)O with Hpgly.HCl yielded [Cu(pgly)(H(2)O)](ClO(4)), which is presumed to have 1D coordination polymeric structure. A [K subset [12-MC-3]] metallacrown, [K(ClO(4))(3)[Cu(3)(pala)(3)]](ClO(4)) has been isolated by reacting Cu(ClO(4))(2) with Kpala in MeCN/MeOH. This [K subset [12-MC-3]] metallacrown further reacts with water to form an infinite 1D coordination polymer [Cu(pala)(H(2)O)(ClO(4))](n)(), which can also be obtained by conducting the reaction in aqueous MeOH.  相似文献   

16.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

17.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

18.
Song HB  Zhang ZZ  Hui Z  Che CM  Mak TC 《Inorganic chemistry》2002,41(12):3146-3154
The P,N,P-tridentate ligand 2,6-bis(diphenylphosphino)pyridine, L, was employed to generate a twelve-membered metallomacrocyclic host species cis-Pt(2)Me(4)(mu-L)(2) that encapsulates Tl(I) and Cu(I) guest ions. The ligand was also used to synthesize another two linear heterotrinuclear complexes, [Me(2)Pt(mu-L)(2)Ag(2)(MeCN)(2)](BF(4))(2).MeCN and [(CO)(3)Fe(mu-L)(2)Ag(2)(Et(2)O)](ClO(4))(2), both containing a metal-metal dative bond (Pt-->Ag and Fe-->Ag, respectively) and stabilized by the d(10)-d(10) argentophilic interaction.  相似文献   

19.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

20.
The preparation of two new families of hexanuclear rhenium cluster complexes containing benzonitrile and phenyl-substituted tetrazolate ligands is described. Specifically, we report the preparation of a series of cluster complexes with the formula [Re(6)Se(8)(PEt(3))(5)L](2+) where L = benzonitrile, p-aminobenzonitrile, p-methoxybenzonitrile, p-acetylbenzonitrile, or p-nitrobenzonitrile. All of these complexes undergo a [2 + 3] cycloaddition with N(3)(-) to generate the corresponding [Re(6)Se(8)(PEt(3))(5)(5-(p-X-phenyl)tetrazol-2-yl)](+) (or [Re(6)Se(8)(PEt(3))(5)(2,5-p-X-phenyltetrazolate)](+)) cluster complexes, where X = NH(2), OMe, H, COCH(3), or NO(2). Crystal structure data are reported for three compounds: [Re(6)Se(8)(PEt(3))(5)(p-acetylbenzonitrile)](BF(4))(2)?MeCN, [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4))?CH(2)Cl(2), and [Re(6)Se(8)(PEt(3))(5)(2,5-p-aminophenyltetrazolate)](BF(4)). Treatment of [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4)) with HBF(4) in CD(3)CN at 100 °C leads to protonation of the tetrazolate ring and formation of [Re(6)Se(8)(PEt(3))(5)(CD(3)CN)](2+). Surprisingly, alkylation of the phenyl and methyl tetrazolate complexes ([Re(6)Se(8)(PEt(3))(5)(2,5-N(4)CPh)](BF(4)) and [Re(6)Se(8)(PEt(3))(5)(1,5-N(4)CMe)](BF(4))) with methyl iodide and benzyl bromide, leads to the formation of mixtures of 1,5- and 2,5-disubstituted tetrazoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号