首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide an assessment of a computational strategy for protein structure refinement that combines self‐guided Langevin dynamics with umbrella‐potential biasing replica exchange using the radius of gyration as a coordinate (Rg‐ReX). Eight structurally nonredundant proteins and their decoys were examined by sampling conformational space at room temperature using the CHARMM22/GBMV2 force field to generate the ensemble of structures. Two atomic statistical potentials (RWplus and DFIRE) were analyzed for structure identification and compared to the simulation force‐field potential. The results show that, while the Rg‐ReX simulations were able to sample conformational basins that were more structurally similar to the X‐ray crystallographic structures than the starting first‐order ranked decoys, the potentials failed to detect these basins from refinement. Of the three potential functions, RWplus yielded the highest accuracy for recognition of structures that refined to an average of nearly 20% increase in native contacts relative to the starting decoys. The overall performance of Rg‐ReX is compared to an earlier study of applying temperature‐based replica exchange to refine the same decoy sets and highlights the general challenge of achieving consistently the sampling and detection threshold of 70% fraction of native contacts. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Reversible folding simulation by hybrid Hamiltonian replica exchange   总被引:1,自引:0,他引:1  
Reversible foldings of a beta-hairpin peptide, chignolin, by recently invented hybrid Hamiltonian replica exchange molecular dynamics simulations based on Poisson-Boltzmann model in explicit water are demonstrated. Initiated from extended structures the peptide folded and unfolded a couple of times in seven out of eight replica trajectories during 100 nanoseconds simulation. The folded states have the lowest all-atom root mean squared deviation of 1.3 A with respect to the NMR structures. At T=300 K the occurrence of folded states was converged to 62% during 80 ns simulation which agrees well with experimental data. Especially, a detailed structural evolution map was constructed based on 800,000 structural snapshots and from where a unique folding doorway emerges. Compared with 130 ns standard replica exchange simulation using 24 replicas on the same system, the hybrid Hamiltonian replica exchange molecular dynamics simulation presents consistent results.  相似文献   

3.
Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method's greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home. For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM.  相似文献   

4.
An asynchronous implementation of the replica exchange method that addresses some of the limitations of conventional synchronous replica exchange implementations is presented. In asynchronous replica exchange pairs of processors initiate and perform temperature replica exchanges independently from the other processors, thereby removing the need for processor synchronization found in conventional synchronous implementations. Illustrative calculations on a molecular system are presented that show that asynchronous replica exchange, contrary to the synchronous implementation, is able to utilize at nearly top efficiency loosely coupled pools of processors with heterogeneous speeds, such as those found in computational grids and CPU scavenging environments. It is also shown that employing non-nearest-neighbor temperature exchanges, which are straightforward to implement within the asynchronous algorithm, can lead to faster temperature equilibration across processors.  相似文献   

5.
Computing converged ensemble properties remains challenging for large biomolecules. Replica exchange molecular dynamics (REMD) can significantly increase the efficiency of conformational sampling by using high temperatures to escape kinetic traps. Several groups, including ours, introduced the idea of coupling replica exchange to a pre-converged, Boltzmann-populated reservoir, usually at a temperature higher than that of the highest temperature replica. This procedure reduces computational cost because the long simulation times needed for extensive sampling are only carried out for a single temperature. However, a weakness of the approach is that the Boltzmann-weighted reservoir can still be difficult to generate. We now present the idea of employing a non-Boltzmann reservoir, whose structures can be generated through more efficient conformational sampling methods. We demonstrate that the approach is rigorous and derive a correct statistical mechanical exchange criterion between the reservoir and the replicas that drives Boltzmann-weighted probabilities for the replicas. We test this approach on the trpzip2 peptide and demonstrate that the resulting thermal stability profile is essentially indistinguishable from that obtained using very long (>100 ns) standard REMD simulations. The convergence of this reservoir-aided REMD is significantly faster than for regular REMD. Furthermore, we demonstrate that modification of the exchange criterion is essential; REMD simulations using a standard exchange function with the non-Boltzmann reservoir produced incorrect results.  相似文献   

6.
The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology--here termed umbrella-sampling REMD (UREMD)--that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.  相似文献   

7.
A hybrid Hamiltonian replica exchange molecular dynamics simulation scheme based on explicit water model hybrided with Poisson-Boltzmann model is brought out. In this method the motions of atoms are governed by potential energy obtained from explicit water model. However, the exchanges between different replicas under different temperatures are controlled by the solvation energies of the solute calculated using the Poisson-Boltzmann model. In order to get the correct canonical ensembles, the van der Waals radii, which are used to define the dielectric boundary, have to be optimized. The conformational spaces of three distinct pentapeptides, Met-enkephalin, alanine 5, and glycine 5, are explored. We find that with the optimized radii the structural ensembles are nearly identical to those obtained by standard replica exchange simulations while the number of replica needed is reduced greatly.  相似文献   

8.
We discuss the use of velocity rescaling for generating rejection-free exchange moves in replica exchange molecular dynamics. We test the efficiency of this approach for a common test case, the trp-cage protein. Advantages and limitations of the approach are discussed and possible extensions outlined.  相似文献   

9.
Replica exchange molecular dynamics (REMD) method is one of the generalized-ensemble algorithms which performs random walk in energy space and helps a system to escape from local energy traps. In this work, we studied the accuracy and efficiency of REMD by examining its ability to reproduce the results of multiple extended conventional molecular dynamics (MD) simulations and to enhance conformational sampling. Two sets of REMD simulations with different initial configurations, one from the fully extended and the other from fully helical conformations, were conducted on a fast-folding 21-amino-acid peptide with a continuum solvent model. Remarkably, the two REMD simulation sets started to converge even within 1.0 ns, despite their dramatically different starting conformations. In contrast, the conventional MD within the same time and with identical starting conformations did not show obvious signs of convergence. Excellent convergence between the REMD sets for T>300 K was observed after 14.0 ns REMD simulations as measured by the average helicity and free-energy profiles. We also conducted a set of 45 MD simulations at nine different temperatures with each trajectory simulated to 100.0 and 200.0 ns. An excellent agreement between the REMD and the extended MD simulation results was observed for T>300 K, showing that REMD can accurately reproduce long-time MD results with high efficiency. The autocorrelation times of the calculated helicity demonstrate that REMD can significantly enhance the sampling efficiency by 14.3+/-6.4, 35.1+/-0.2, and 71.5+/-20.4 times at, respectively, approximately 360, approximately 300, and approximately 275 K in comparison to the regular MD. Convergence was less satisfactory at low temperatures (T<300 K) and a slow oscillatory behavior suggests that longer simulation time was needed to reach equilibrium. Other technical issues, including choice of exchange frequency, were also examined.  相似文献   

10.
11.
12.
The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.  相似文献   

13.
Replica exchange molecular dynamics (REMD) simulations have become an important tool to study proteins and other biological molecules in silico. However, such investigations require considerable, and often prohibitive, numerical effort when the molecules are simulated in explicit solvents. In this communication we show that in this case the cost can be minimized by choosing the number of replicas as N(opt) approximately 1+0.594 radical C ln(Tmax/Tmin), where C is the specific heat, and the temperatures distributed according to Ti(opt) approximately T min(Tmax/Tmin)(i-1)/(N-1).  相似文献   

14.
To overcome the problem of insufficient conformational sampling within biomolecular simulations, we have developed a novel Hamiltonian replica exchange molecular dynamics (H-REMD) scheme that uses soft-core interactions between those parts of the system that contribute most to high energy barriers. The advantage of this approach over other H-REMD schemes is the possibility to use a relatively small number of replicas with locally larger differences between the individual Hamiltonians. Because soft-core potentials are almost the same as regular ones at longer distances, most of the interactions between atoms of perturbed parts will only be slightly changed. Rather, the strong repulsion between atoms that are close in space, which in many cases results in high energy barriers, is weakened within higher replicas of our proposed scheme. In addition to the soft-core interactions, we proposed to include multiple replicas using the same Hamiltonian/level of softness. We have tested the new protocol on the GTP and 8-Br-GTP molecules, which are known to have high energy barriers between the anti and syn conformation of the base with respect to the sugar moiety. During two 25 ns MD simulations of both systems the transition from the more stable to the less stable (but still experimentally observed) conformation is not seen at all. Also temperature REMD over 50 replicas for 1 ns did not show any transition at room temperature. On the other hand, more than 20 of such transitions are observed in H-REMD using six replicas (at three different Hamiltonians) during 6.8 ns per replica for GTP and 12 replicas (at six different Hamiltonians) during 8.7 ns per replica for 8-Br-GTP. The large increase in sampling efficiency was obtained from an optimized H-REMD scheme involving soft-core potentials, with multiple simulations using the same level of softness. The optimization of the scheme was performed by fast mimicking [J. Hritz and C. Oostenbrink, J. Chem. Phys. 127, 204104 (2007)].  相似文献   

15.
Temperature-based replica exchange (T-ReX) enhances sampling of molecular dynamics simulations by autonomously heating and cooling simulation clients via a Metropolis exchange criterion. A pathological case for T-ReX can occur when a change in state (e.g., folding to unfolding of a protein) has a large energetic difference over a short temperature interval leading to insufficient exchanges amongst replica clients near the transition temperature. One solution is to allow the temperature set to dynamically adapt in the temperature space, thereby enriching the population of clients near the transition temperature. In this work, we evaluated two approaches for adapting the temperature set: a method that equalizes exchange rates over all neighbor temperature pairs and a method that attempts to induce clients to visit all temperatures (dubbed "current maximization") by positioning many clients at or near the transition temperature. As a test case, we simulated the 57-residue SH3 domain of alpha-spectrin. Exchange rate equalization yielded the same unfolding-folding transition temperature as fixed-temperature ReX with much smoother convergence of this value. Surprisingly, the current maximization method yielded a significantly lower transition temperature, in close agreement with experimental observation, likely due to more extensive sampling of the transition state.  相似文献   

16.
We present an approach to mimic replica exchange molecular dynamics simulations (REMD) on a microsecond time scale within a few minutes rather than the years, which would be required for real REMD. The speed of mimicked REMD makes it a useful tool for "testing" the efficiency of different settings for REMD and then to select those settings, that give the highest efficiency. We present an optimization approach with the example of Hamiltonian REMD using soft-core interactions on two model systems, GTP and 8-Br-GTP. The optimization process using REMD mimicking is very fast. Optimization of Hamiltonian-REMD settings of GTP in explicit water took us less than one week. In our study we focus not only on finding the optimal distances between neighboring replicas, but also on finding the proper placement of the highest level of softness. In addition we suggest different REMD simulation settings at this softness level. We allow several replicas to be simulated at the same Hamiltonian simultaneously and reduce the frequency of switching attempts between them. This approach allows for more efficient conversions from one stable conformation to the other.  相似文献   

17.
The conformational states of the zwitterionic form of the pentapeptide Met-enkephalin were explored with the use of explicit solvent molecular dynamics (MD). The N and C termini are ionized, as appropriate to polar solvent conditions, and consequently, there is a competition between open forms driven by polar solvation of the ammonium and carboxylate groups and closed forms driven by their salt-bridge formation. Normal MD started from an open state does not sample closed conformations. Sampling was enhanced with a distance replica exchange method (DREM) and with a Hamiltonian replica exchange method (HREM). The potential of mean force (PMF) along an end-to-end distance reaction coordinate was obtained with the DREM. The PMF shows a stable salt-bridge state and the presence of a large region of open states, as hypothesized for conformationally promiscuous small opiate peptides. The HREM systems differ by scaling the peptide-peptide and peptide-solvent electrostatic and Lennard-Jones potentials, with the goal of improving the sampling efficiency with a limited number of systems. A small number of systems were found to be sufficient to sample closed and open states. A principal component analysis (PCA) shows that the HREM-generated fluctuations are dominated by the first two principal modes. The first corresponds to the end-to-end reaction coordinate found in the DREM, and the first mode PMF is similar to the DREM PMF. The second mode describes the presence of two conformations, both of which correspond to the salt-bridge state distance. The conformers differ in the values of neighboring psi and phi dihedral angles, since such psi/phi compensation can still produce the same end-to-end distance. The two-dimensional PMF constructed from the first two PCA modes captures most of the significant backbone conformational space of Met-enkephalin.  相似文献   

18.
The density of states of trpzip2, a β-hairpin peptide, has been explored at all-atom level. Replica exchange Monte Carlo method was used for sufficient sampling over a wide range of temperature. Micro-canonical analysis was performed to confirm that the phase transition behavior of this two-state folder is first-order-like. Canonical analysis of heat capacity suggests that hydrogen bonding interaction exerts a considerable positive influence on folding cooperativity, in contrast, hydrophobic interaction is insufficient for high degree of folding cooperativity. Furthermore, we explain physical nature of the folding process from free energy landscape perspective and extensively analyse hydrogen bonding and stacking energy.  相似文献   

19.
A multiple scaling replica exchange method for the efficient conformational sampling of biomolecular systems in explicit solvent is presented. The method is a combination of the replica exchange with solute tempering (REST) technique and a Tsallis biasing potential. The Tsallis biasing increases the sampling efficiency, while the REST minimizes the number of replicas needed. Unbiased statistics can be obtained by reweighting of the data using a weighted histogram analysis technique. The method is illustrated by its application to a ten residue peptide in explicit water.  相似文献   

20.
A coarse-grained representation of a condensed phase system can significantly reduce the number of system degrees of freedom, making coarse-grained simulations very computationally efficient. Moreover, coarse graining can smoothen the free energy landscape of the system. Thus coarse-grained dynamics is usually faster than its fully atomistic counterpart. In this work, the smart resolution replica exchange method is introduced that incorporates the information from coarse-grained simulations into atomistic simulations in order to accelerate the sampling of rough, complex atomistic energy landscapes. Within this methodology, interactions between particles are defined by a potential energy that interpolates between a fully atomistic potential and a fully coarse-grained effective potential according to a parameter lambda. Instead of exchanging the configurations from neighboring resolutions directly, as has been done in the resolution replica exchange methods [E. Lyman et al., Phys. Rev. Lett. 96, 028105 (2006); M. Christen and W. F. v. Gunsteren, J. Chem. Phys. 124, 154106 (2006)], the configuration described at the coarser resolution is first relaxed before an exchange is attempted, similar to the smart walking method [R. Zhou and B. J. Berne, J. Chem. Phys. 107, 9185 (1997)]. This approach greatly increases the acceptance ratio of exchange and only two replicas, one at the atomistic level and one at the coarse-grained level, are usually required (although more can be implemented if desired). This new method can approximately obtain the correct canonical sampling if the exchange interval is sufficiently large to allow the system to explore the local energy landscape. The method is demonstrated for a two-dimensional model system, where the ideal population distribution can be recovered, and also for an alanine polypeptide (Ala(15)) model with explicit water, where its native structure, an alpha helix, is obtained from the extended structure within 1 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号