首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  Anhydrous 1,6-hexanediammonium dihydrogendecavanadate ((HdaH2)2H2V10O28, 1) was prepared by reaction of V2O5 with 1,6-hexanediamine in aqueous solution. The crystal structure of 1 was determined, and the proton positions in the H2V10O28 4− anion were calculated by the bond length/bond number method. The protons are bound to the centrosymmetrically oriented μ–OV3 groups of the decavanadate anion. Based on the analysis of IR spectra of 1 prepared from H2O and D2O, the absorption band at 871 cm−1 can be attributed to δ(V–Ob–H) vibrations. Received August 3, 2001. Accepted (revised) October 8, 2001  相似文献   

2.
CuFeO2 single crystal, synthesized by the flux method, is a narrow band gap semiconductor crystallizing in the delafossite structure with a direct optical transition of 1.63 eV. The oxide exhibits a good chemical stability; the semi-logarithmic plot gave an exchange current density of 0.60 μA cm−2 in KCl (0.5 M) electrolyte. CuFeO2 shows p-type conductivity; the origin of acceptors Cu2+ results from oxygen insertion in the layered lattice where most of excess holes are trapped in surface-polaron states. The electrochemical study is confined in the (a,b) plane and reversible oxygen intercalation is evidenced from the intensity potential characteristics. The detailed photoelectrochemical studies have been reported for the first time on the single crystal. The photocurrent is ascribed to the transfer Cu+:3d3d. The capacitance measurement (C−2–V) shows a linear behavior from which a flat band potential of +0.54 VSCE and a density N A of 1.60 × 1018 cm−3 were determined. The valence band, located at 5.33 eV below vacuum, is made up of Cu-3d orbital typical of delafossite oxides. The Nyquist plot shows a semicircle attributed to a capacitive behavior with a low density of surface states within the gap. The centre is localized below the real axis with an angle of 16.2° ascribed to a constant phase element (CPE), a single barrier of the junction CuFeO2/electrolyte and one relaxation time of the electrical equivalent circuit.
M. TrariEmail:
  相似文献   

3.
CuCrO2 single crystal, elaborated by the flux method, is a narrow-band-gap semiconductor crystallizing in the delafossite structure with an indirect optical transition at 2.12 eV. The relatively longer Cu–Cu is consistent with the semi-conducting behavior. The conductivity in the (001) plans is thermally activated and occurs predominantly by small polaron hopping through mixed-valence states Cu+/2+ in conformity with a classical dielectric behavior. The activation energy (0.05 eV) gave an effective mass of 9 m o, indicating that the levels in the vicinity of the Fermi level E f are strongly localized. The oxide shows an excellent chemical stability over the whole pH range; the semi-logarithmic plot gave an exchange current density of 0.7 mA cm−2 and a corrosion potential of 0.18 V/SCE in KOH (0.5 M) electrolyte. The electrochemical study is confined in (001) plans, and reversible oxygen intercalation is evidenced from the cyclic voltammetry. The Mott–Schottky plot (C−2-V) is characteristic of p type conduction and exhibits a linear plot from which a flat band potential of +0.21 V/SCE and a holes density N A of 5.06 × 1014 cm−3 were obtained. The photocurrent is due to Cu+: d → d transition and the valence band is positioned at 5.34 eV below vacuum.  相似文献   

4.
 Anhydrous 1,6-hexanediammonium dihydrogendecavanadate ((HdaH2)2H2V10O28, 1) was prepared by reaction of V2O5 with 1,6-hexanediamine in aqueous solution. The crystal structure of 1 was determined, and the proton positions in the H2V10O28 4− anion were calculated by the bond length/bond number method. The protons are bound to the centrosymmetrically oriented μ–OV3 groups of the decavanadate anion. Based on the analysis of IR spectra of 1 prepared from H2O and D2O, the absorption band at 871 cm−1 can be attributed to δ(V–Ob–H) vibrations.  相似文献   

5.
    
A fully automated, versatile Temperature Programmed Desorption (TDP), Temperature Programmed Reaction (TPR) and Evolved Gas Analysis (EGA) system has been designed and fabricated. The system consists of a micro-reactor which can be evacuated to 10−6 torr and can be heated from 30 to 750°C at a rate of 5 to 30°C per minute. The gas evolved from the reactor is analysed by a quadrupole mass spectrometer (1–300 amu). Data on each of the mass scans and the temperature at a given time are acquired by a PC/AT system to generate thermograms. The functioning of the system is exemplified by the temperature programmed desorption (TPD) of oxygen from YBa2Cu3−xCoxO7 ± δ, catalytic ammonia oxidation to NO over YBa2Cu3O7−δ and anaerobic oxidation of methanol to CO2, CO and H2O over YBa2Cu3O7−δ (Y123) and PrBa2Cu3O7−δ (Pr123) systems. Contribution no. 847 from Solid State and Structural Chemistry Unit  相似文献   

6.
A new type of oxide–salt composite electrolyte, yttrium doped ceria YDC–Ca3(PO4)2–K3PO4, was developed and demonstrated for its promising use for ammonia synthesis. Using this composite electrolyte, ammonia was synthesized from nitrogen and natural gas at atmospheric pressure in the solid-state proton conducting cell reactor, and the optimal condition for ammonia production was determined . The evolved rate of ammonia is up to 6.95×10−9 mol s−1 cm−2.  相似文献   

7.
The title compounds, (NH4)2[MnII(edta)(H2O)]·3H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)2[MnII(cydta)(H2O)]·4H2O (H4cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[MnII(Hdtpa)]·3.5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), were prepared; their compositions and structures were determined by elemental analysis and single-crystal X-ray diffraction technique. In these three complexes, the Mn2+ ions are all seven-coordinated and have a pseudomonocapped trigonal prismatic configuration. All the three complexes crystallize in triclinic system in P-1 space group. Crystal data: (NH4)2[MnII(edta)(H2O)]·3H2O complex, a = 8.774(3) ?, b = 9.007(3) ?, c = 13.483(4) ?, α = 80.095(4)°, β = 80.708(4)°, γ = 68.770(4)°, V = 972.6(5) ?3, Z = 2, D c = 1.541 g/cm3, μ = 0.745 mm−1, R = 0.033 and wR = 0.099 for 3406 observed reflections with I ≥ 2σ(I); (NH4)2[MnII(cydta)(H2O)]·4H2O complex, a = 8.9720(18) ?, b = 9.4380(19) ?, c = 14.931(3) ?, α = 76.99(3)°, β = 83.27(3)°, γ = 75.62(3)°, V = 1190.8(4)?3, Z = 2, D c = 1.426 g/cm3, μ = 0.625 mm−1, R = 0.061 and wR = 0.197 for 3240 observed reflections with I ≥ 2σ(I); K2[MnII(Hdtpa)]·3.5H2O complex, a = 8.672(3) ?, b = 9.059(3) ?, c = 15.074(6) ?, α = 95.813(6)°, β = 96.665(6)°, γ = 99.212(6)°, V = 1152.4(7) ?3, Z = 2, D c = 1.687 g/cm3, μ = 1.006 mm−1, R = 0.037 and wR = 0.090 for 4654 observed reflections with I ≥ 2σ(I). Original Russian Text Copyright ? 2008 by X. F. Wang, J. Gao, J. Wang, Zh. H. Zhang, Y. F. Wang, L. J. Chen, W. Sun, and X. D. Zhang The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 753–759, July–August, 2008.  相似文献   

8.
Lithium insertion into manganese dioxide polymorphs in aqueous electrolytes   总被引:2,自引:0,他引:2  
The electrochemical behaviour of the spinel-like LiMn2O4 was studied in non-aqueous and aqueous saturated alkali nitrate electrolytes in comparison with the layered manganese dioxide δ-MnO2. The results obtained by galvanostatic and cyclic voltammetry techniques showed that the insertion of Li+/e or H+/e depends on both the host lattice and the type of electrolyte. The spinel-like LiMn2O4 preferably allowed the insertion of Li+/e in non-aqueous and aqueous saturated LiNO3 electrolytes, as observed from the similarity of the electrochemical behaviour in these electrolytes and the stability of the structure. This was explained by the presence of a three-dimensional network of vacant tetrahedral and half-filled octahedral sites in LiMn2O4, which guarantee high mobility of Li+ ions. The layered manganese dioxide could be inserted by Li+/e only in non-aqueous electrolytes. The work described herein was carried out at the Institut für Anorganische und Analytische Chemie, Technische Universit?t Berlin, Germany  相似文献   

9.
Orthorhombic SrSnO3 was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO3. The complex dielectric function and the optical absorption of SrSnO3 were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm−1 was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO3 was achieved.  相似文献   

10.
Gamma radiolysis of oxygenated 1–10 mM azide solutions was carried out at various pH values. In oxygenated 10 mM azide solutions, H2O2 and NO 2 were observed as radiolytic products while NH3 was not. The concentration of H2O2 reached its maximum level at a dose of 1 kGy, whereas NO 2 yield increased non-linearly beyond 2 kGy in this system. Both in aerated and oxygenated systems, G(NO 2 ) and G(H2O2) were found to vary with N 3 concentration. The yield of NO 2 was found to be dependent on both dose rate and pH. On pulse radiolysis, NO 2 was found as a radiolytic product in aerated 1 mM azide solution at pH 6.8. In this system the intermediate generated exhibits absorbance around 250 nm. The overall results obtained during the present study reveal that in presence of both reducing radical (mainly e aq ) and oxygen, N 3 produced an intermediate possibly NH2O 2 radical, which is the prime source for NO 2 generation.  相似文献   

11.
DTA and XRD studies of the Fe2V4O13–Cr2V4 O13 system have shown that continuous solid solutions of a Fe2–xCrxV4O13 type, bearing a Fe2 V4 O13 structure, are formed in the system. With the increasing degree of the Cr3+ ion incorporation into the Fe2 V4 O13 structure, a contraction of the solid solution crystal lattice develops. Solid solutions of a Fe2–x Crx V4 O13 type melt incongruently, their melting temperature increasing from 953 to 1003 K with increase in the degree of the Cr3+ ion incorporation. The solid product of melting Fe2–x Crx V4 O13 solid solutions for 0.2<x >1.2 is the Fe1–x Crx VO4 solution phase, and for x ≤0.2 and x ≥1.4 – the Fe1–x Crx VO4 phase as well as FeVO4 or CrVO4 , respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Experimental and theoretical studies of the electronic and optical properties of orthorhombic BaCu2Se2 and BaCu2Te2 are reported. Experimental data include the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, and lattice constants for , and optical transmission and diffuse reflectance data at room temperature. Nominally stoichiometric, polycrystalline samples form with hole concentrations inferred from Hall measurements of 2×1018 and 5×1019 cm−3 near room temperature for the selenide and telluride, respectively. The corresponding mobilities are near 15 cm2 V−1 s−1 for both materials. Optical measurements reveal a transition near 1.8 eV in BaCu2Se2, while no similar feature was observed for BaCu2Te2. First principles calculations indicate both materials are direct or nearly direct gap semiconductors with calculated gaps near 1.0 eV and 1.3 eV for the telluride and selenide, respectively, and predict weak absorption below about 2 eV. Transport properties calculated from the electronic structure are also presented.  相似文献   

13.
Cyclic voltammetry, chronoamperometry and electro-chemical impedance have been used for the analysis of the following medium temperature half-cells: Ce0.85Sm0.15O1.925| La0.6Sr0.4CoO3-δ, Ce0.85Sm0.15O1.925| Pr0.6Sr0.4CoO3-δ and Ce0.85Sm0.15O1.925| Gd0.6Sr0.4CoO3-δ. The influence of the atomic mass of the A–site cation in the perovskite cathode on the oxygen reduction kinetics has been discussed. The total polarisation resistance, obtained from the Z′′, Z′-plots, increases with the rise of atomic mass of the cation in the A-site position. Two different time constants have been obtained for the oxygen electroreduction process, and the replacement of La3+ by Gd3+ in the cathode material decreases somewhat the surface catalytic activity, but the noticeably higher low-frequency series resistance, i.e. mainly diffusion-like mass transfer resistance, values have been obtained. However, the mainly diffusion-limited process at T≤773 K for Gd0.6Sr0.4CoO3-δ and the kinetically mixed process (diffusion + charge transfer) for Pr0.6Sr0.4CoO3-δ and La0.6Sr0.4CoO3-δ have been established. At higher temperature (T≥993 K) and more negative potentials, the O2 reduction process is limited mainly by the heterogeneous charge transfer step. Presented at the fourth Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005.  相似文献   

14.
For the Er3+–Yb3+ codoped Al2O3 powders, the strong near-infrared photoluminescence (PL) centered at 1.535 μm derived from the energy transfer (ET) from Yb3+ to Er3+ was detected by a 978 nm laser diode excitation. Compared with that of Er3+ doped Al2O3 powders, the PL intensity enhanced about 9 times, the full width at half maximum (FWHM) extended from 82 to 90 nm, and the lifetime increased from 3.22 to 4.17 ms for Er3+–Yb3+ codoped Al2O3 powders at room temperature. The ET coefficient of 2.18 × 10−18 cm3 s−1 from Yb3+ to Er3+ was obtained based on the rate equations. The decrease of PL intensity with increasing temperature in the range of 298–733 K was observed, due to thermally enhanced nonradiative relaxation 4I13/2 → 4I15/2 dominated over thermally enhanced phonon-assisted ET in the Er3+–Yb3+ codoped Al2O3.  相似文献   

15.
Bismuth sulfide (Bi2S3) thin films were electrodeposited from non-aqueous dimethyl sulfoxide medium containing Bi(NO3)3 and thiourea as the precursor salts, triethanol amine as the complexing agent, and TritonX-100 as the surface active agent. The prepared films were subjected to rigorous experimentation in order to validate their potential candidature for solar cells. The films exhibited band gap energy of ∼1.3 eV and resistivity of the order of 2 × 106 Ω cm at room temperature as was obtained from UV–Vis spectroscopy and four-probe measurements, respectively. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive analysis of X-ray were employed to reveal the morphology, structure, and chemical composition of the film matrix. The Bi2S3 films were found to be non-decomposable up to the temperature of 1,000 °C with the help of thermogravimetry–differential thermal analysis. The Nyquist and Mott–Schottky plots derived from electrochemical impedance spectroscopy measurements provided important information regarding electrical and semiconducting properties of the films. The n-type film with a donor density of the order of ∼1023 m−3 displayed reasonable photoactivity under illumination and is recommended as a promising candidate for potential photoelectrochemical applications.  相似文献   

16.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

17.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

18.
Relativistic energy-consistent small-core lanthanide pseudopotentials of the Stuttgart–Bonn variety and extended valence basis sets have been used for the investigation of the dimers La2 and Lu2. It was found that the ground states for La2 and Lu2 are most likely 1 g + g 2π u 4) and 3 g (4f 144f 14σ g 2σ u 2πu 2), respectively. The molecular constants including error bars were derived from multireference configuration interaction as well as coupled-cluster calculations, taking into account corrections for atomic spin–orbit splitting as well as possible basis set superposition errors. The theoretical values for La2 (R e=2.70±0.03 ?, D e=2.31±0.13 eV, ωe=186±13 cm−1) show good agreement with the experimental binding energy (D e=2.52±0.22 eV), but the experimental vibrational constant in an Ar matrix (ωe=236±0.8 cm−1) is significantly higher. For Lu2 the theoretical values (R e=3.07±0.03 ?, D e=1.40±0.12 eV, ωe=123±1 cm−1) are in overall excellent agreement with experimental data (D e=1.43±0.34 eV, ωe=122± 1 cm−1). The electronic structures of La2 and Lu2 are compared to those other lanthanide dimers and trends in the series are discussed. Received: 25 March 2002 / Accepted: 2 June 2002 / Published online: 21 August 2002  相似文献   

19.
The Er3+–Yb3+ codoped Al2O3 has been prepared by the sol–gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3 · 5H2O] and ytterbium nitrate [Yb(NO3)3 · 5H2O]. The phase structure, including only two crystalline types of doped Al2O3 phases, θ and γ, was obtained for the 1 mol% Er3+ and 5 mol% Yb3+ codoped Al2O3 at the sintering temperature of 1,273 K. By a 978 nm semiconductor laser diodes excitation, the visible up-conversion emissions centered at about 523, 545, and 660 nm were obtained. The temperature dependence of the green up-conversion emissions was studied over a wide temperature range of 300–825 K, and the reasonable agreement between the calculated temperature by the fluorescence intensity ratio (FIR) theory and the measured temperature proved that Er3+–Yb3+ codoped Al2O3 plays an important role in the application of high temperature sensor.  相似文献   

20.
The differential pulse (dp) polarograms of thiamine in neutral aqueous solutions exhibited six peaks at low depolarizer concentration (⋦10−4 mol dm−3) and only three peaks at concentrations ≥10−3 mol dm−3. Only one of these was found to correspond to the diffusion-controlled reduction of this compound at the dme and this was shown to be an irreversible two-electron process. The kinetic parameters derived from the dp polarograms were found to be in good agreement with those calculated from classical polarograms and were:E 1/2=−1·261 Vvs SCE,an a=0·54 andD≈3·5×10−6 cm2 sec−1 for 10−3 mol dm−3 thiamine in 0·1 mol dm−3 acetate buffer (pH 6·5). The reduction product has been identified as dihydrothiamine. The effect of pH on the dpp of thiamine was studied in the pH range 0–7. In the pH region 5·5 to 7·0 only one peak attributable to the B1 + form of thiamine is present. In the pH region 3·5–5·5 another dpp peak attributable to the protonated form (B1H2+) of thiamine was also observed. At pHs less than 3 only one peak was observed which could be attributed to the doubly protonated form (B1 H2 3+) of thiamine. Surfactants like triton-X-100 and CTABr were found to inhibit the electroreduction of thiamine due to the strong adsorption of these compounds on the dme. Thiamine itself was found to have an inhibitory effect on its own electroreduction, although to a smaller extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号