首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite recent progress in the production of large area, high quality graphene, the technological implementation of such sheets into real world devices still requires intense future research. A major obstacle is the development of efficient chemical methods for the patterned functionalization of graphene, in order to locally define regions with a band gap, without the simultaneous introduction of defects into the carbon framework. In this respect, it can be expected that much can be learned from the further developed chemistry of carbon nanotubes as the one‐dimensional counterparts of graphene. Comparatively closer to technological applications is the use of graphene in flexible, transparent electrodes, as component of (bio‐)chemical sensors, or as reinforcing filler in composite materials. However, most of these applications require the development of optimized protocols for the conversion of graphene oxide into pristine graphene. To this end, a great challenge is not only to quantitatively remove the oxygen‐containing functional groups, but also to heal the disorder in certain areas of the sp2‐hybridized honeycomb lattice.  相似文献   

2.
Similar to carbon‐based graphene, fullerenes and carbon nanotubes, boron atoms can form sheets, fullerenes, and nanotubes. Here we investigate several of these novel boron structures all based on the boron double ring within the framework of density functional theory. The boron sheet is found to be metallic and flat in its ground state. The spherical boron cage containing 180 atoms is also stable and has I symmetry. Stable nanotubes are obtained by rolling up the boron sheet, and all are metallic. The hydrogen storage capacity of boron nanostructures is also explored, and it is found that Li‐decorated boron sheets and nanotubes are potential candidates for hydrogen storage. For Li‐decorated boron sheets, each Li atom can adsorb a maximum of 4 H2 molecules with gd=7.892 wt %. The hydrogen gravimetric density increases to gd=12.309 wt % for the Li‐decorated (0,6) boron nanotube.  相似文献   

3.
4.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   

5.
In this paper, a broad overview on the applications of different carbon-based nanomaterials, including nanodiamonds, fullerenes, carbon nanotubes, graphene, carbon nanofibers, carbon nanocones-disks and nanohorns, as well as their functionalized forms, in sample preparation is provided. Particular attention has been paid to graphene because many papers regarding its application in this research field are becoming available. The distinctive properties, derivatization methods and application techniques of these materials were summarized and compared. According to their research status and perspective, these nanomaterials were classified in four groups (I: graphene and carbon nanotubes; II: carbon nanofibers; III: fullerenes; and IV: nanodiamonds, carbon nanocones/disks and carbon nanohorns) and characteristics and future trends of every group were discussed.  相似文献   

6.
碳纳米材料由于其具有独特的纳米结构、大的比表面积、较强的热稳定性、良好的导电性以及较好的吸附性能等物理化学性质,因而在分析科学、生命科学、材料科学及环境科学等领域得广泛的应用.结合国内外最新文献,对近5年来碳纳米材料在毛细管电色谱新型固定相的制备研究方面进展进行了评述,包括毛细管电色谱的分类及分离机理、毛细管电色谱柱的制备方法和优缺点,碳纳米材料(石墨烯、碳纳米管、氧化石墨烯、还原氧化石墨烯、富勒烯)的结构性质及制备方法、碳纳米材料在毛细管电色谱柱固定相中的应用及作用机理等,并对其在色谱应用领域的方向进行了展望.  相似文献   

7.
Graphene oxide–polyaniline composites were synthesized by an interfacial method using two green solvents, water and an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), as the two phases. The interfacial polymerization of aniline was carried out at room temperature in the presence of graphene oxide dispersed in the aqueous phase. The analysis revealed the surface of the graphene sheets to be coated with a smooth thin layer of polyaniline. The thermal stability of the composites was much better than that of bare graphene oxide. The composites were used to modify the glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media. This method is a facile, efficient, and green route for the development of doped polyaniline materials suitable for chemical sensors.  相似文献   

8.
Here we report a facile strategy of fabricating multifunctional polyacrylamide(PAM) hydrogels based on hybrid graphene oxide (GO) sheets and carbon nanotubes (CNTs). Compared to original PAM hydrogels cross-linked chemically with N,N-methylenebisacrylamide (BIS), the hybrid hydrogels exhibit high mechanical strength (strength > 90?kPa and broken strain > 2000%), well adhesion, environmental stability, dye-loading capacity, and excellent self-healing property. This study provides a new insight for the preparation of functionalized hydrogels with carbon nano-materials, and the resultant material shows very promising performance for a range of applications.  相似文献   

9.
Carbon nanomaterials have generated a tremendous amount of attention in the scientific community. While most of the research and development efforts have been on fullerenes, carbon nanotubes, and graphene sheets, carbon nanoparticles (which are often considered as impurities or unwanted complications in the other carbon nanomaterials) have recently emerged as a unique class of highly fluorescent nano-dots. However, little or no attention has been paid to potential uses of carbon nanoparticles as chromophores in photochemical reactions or for photon harvesting and photoconversion in general. In the study reported herein we demonstrate the chromophore-equivalent functions of aqueous-suspended small carbon nanoparticles in harvesting visible photons for the reductive coating of the nanoparticles with silver and gold and, as a result, the preparation of unique carbon-noble-metal core-shell nanostructures.  相似文献   

10.
This feature article summarizes our recent accomplishments in the field of carbon nanostructures, fullerenes and carbon nanotubes, as integrative components in multifunctional hybrid cells that bear large promise for applications as photochemical energy conversion systems.  相似文献   

11.
Applications of graphene sheets in the fields of biosensors and biomedical devices are limited by their insolubility in water. Consequently, understanding the dispersion mechanism of graphene in water and exploring an effective way to prepare stable dispersions of graphene sheets in water is of vital importance for their application in biomaterials, biosensors, biomedical devices, and drug delivery. Herein, a method for stable dispersion of graphene sheets in water by single‐stranded oligodeoxynucleotides (ssODNs) is studied. Owing to van der Waals interactions between graphene sheets, they undergo layer‐to‐layer (LtL) aggregation in water. Molecular dynamics simulations show that, by disrupting van der Waals interaction of graphene sheets with ssODNs, LtL aggregation of graphene sheets is prevented, and water molecules can be distributed stably between graphene sheets. Thus, graphene sheets are dispersed stably in water in the presence of ssODNs. The effects of size and molarity of ssODNs and noncovalent modification of graphene sheets are also discussed.  相似文献   

12.
The production of graphene from various sources has garnered much attention in recent years with the development of methods that range from “bottom‐up” to “top‐down” approaches. The top‐down approach often requires thermal treatment to obtain a few‐layered and lowly oxygenated graphene sheets. Herein, we demonstrate the production of graphene through oxidation and thermal‐reduction/exfoliation of two sources of differently orientated graphene sheets: multiwalled carbon nanotubes (MWCNTs) and stacked graphene nanofibers (SGNFs). These two carbon‐nanofiber‐like materials have similar axial (length: 5–9 μm) and lateral dimensions (diameter: about 100 nm). We demonstrate that, whereas SGNFs exfoliate along the lateral plane between adjacent graphene sheets, carbon nanotubes exfoliate along its longitudinal axis and leads to opening of the carbon nanotubes owing to the built‐in strain. Subsequent thermal exfoliation leads to graphene materials that have, despite the fact that their parent materials exhibited similar dimensions, dramatically different proportions and, consequently, materials properties. Graphene that was prepared from MWCNTs exhibited dimensions of about 5000×300 nm, whereas graphene that was prepared from SGNFs exhibited sheets with dimensions of about 50×50 nm. The density of defects and oxygen‐containing groups on these materials are dramatically different, as are the electrochemical properties. We performed morphological, structural, and electrochemical characterization based on TEM, SEM, high‐resolution X‐ray photoelectron spectroscopy, Raman spectroscopy, and cyclic voltammetry (CV) analysis on the stepwise conversion of the target source into the exfoliated graphene. Morphological and structural characterization indicated the successful chemical and thermal treatment of the materials. Our findings have shown that the orientation of the graphene sheets in starting materials has a dramatic influence on their chemical, material, and electrochemical properties.  相似文献   

13.
疏水石墨烯水相分散液的制备及电化学性能   总被引:1,自引:0,他引:1  
通过未添加表面活性剂和稳定剂而得到均匀的石墨烯水相分散液的方法,近来来成为研究的一大热点.本工作通过提高水合肼的用量,来替代表面活性剂或者其它稳定剂的作用,得到了良好的均匀的水相石墨烯分散液,可长期稳定存放,6个月内未发生团聚现象.其Zeta电位低于-32.5 mV(pH值为5.89),原子力显微镜和透射电子显微镜图像表明产物为具有褶皱结构的、六方晶系的单层石墨烯结构,厚度为0.38 nm.XPS分析显示这种方法对于除去羟基和环氧基团起到了有效的作用.利用这种分散液所制备的石墨烯-玻碳电极(GE-GCE)在检测抗坏血酸(AA)和尿酸(UA)时,比普通玻碳电极(GCE)显示出更良好的电化学响应.  相似文献   

14.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

15.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

16.
张川洲  谭辉  毛燕  李刚  韩冬雪  牛利 《应用化学》2013,30(4):367-372
基于碳量子点具有良好的水溶性、化学惰性、低毒性、易于功能化和抗光漂白性等优异性能,碳量子点和其它的碳纳米材料(如富勒烯、碳纳米管和石墨烯等)同样引起了研究者广泛的关注。 碳量子点可以通过很多较为廉价的一步法进行大规模的制备,包括化学氧化法、超声法、微波法和激光烧蚀法等。 本文主要介绍了不同碳量子点的合成方法,以及依赖于碳量子点尺寸和波长等性质的发光性能,并且讨论了碳量子点在生物成像、光催化、能量转换/储存、光电子、光限幅和传感器等方面的应用。  相似文献   

17.
There is no doubt that the outstanding optical and electronic properties that low-dimensional carbon-based nanomaterials exhibit call for their implementation into optoelectronic devices. However, to harvest the enormous potential of these nanocarbons it is essential to probe them in multifunctional electron donor-acceptor systems, placing particular attention on the interactions between electron donors/electron acceptors and nanocarbons. This feature article outlines challenges and recent breakthroughs in the area of interfacing organic and inorganic semiconductors with low-dimensional nanocarbons that range from fullerenes (0D) and carbon nanotubes (1D) to graphene (2D). In the context of organic semiconductors, we focus on aromatic macrocycles and extended tetrathiafulvalenes, and CdTe nanocrystals/quantum dots represent the inorganic semiconductors. Particular emphasis is placed on designing and probing solar energy conversion nanohybrids.  相似文献   

18.
卟啉-碳纳米非共价复合材料在光电器件、催化和生物医药等领域均具有重要的研究意义和广泛的应用前景.本文综述了卟啉类化合物与碳纳米材料的非共价相互作用的研究进展,并重点介绍了卟啉的结构设计对碳纳米材料结构的依赖性和进而表现出的选择性,包括对富勒烯碳笼大小、旋光性的依赖性,对单壁碳管导电性、管径、手性、旋光性的依赖性,以及对石墨烯氧化程度的依赖性等.  相似文献   

19.
The hydrophilic nature of graphene oxide sheets can be tailored by varying the carbon to oxygen ratio. Depending on this ratio, the particles can be deposited at either a water-air or a water-oil interface. Upon compression of thus-created Langmuir monolayers, the sheets cover the entire interface, assembling into a strong, compact layer of tiled graphene oxide sheets. With further compression, the particle layer forms wrinkles that are reversible upon expansion, resembling the behavior of an elastic membrane. In the present work, we investigate under which conditions the structure and properties of the interfacial layer are such that free-standing films can be obtained. The interfacial rheological properties of these films are investigated using both compressional experiments and shear rheometry. The role of surface rheology in potential applications of such tiled films is explored. The rheological properties are shown to be responsible for the efficiency of such layers in stabilizing water-oil emulsions. Moreover, because of the mechanical integrity, large-area monolayers can be deposited by, for example, Langmuir-Blodgett techniques using aqueous subphases. These films can be turned into transparent conductive films upon subsequent chemical reduction.  相似文献   

20.
纤维状能源器件的研究极大地推动了可穿戴电子设备的快速发展。烯碳纤维主要包括碳纳米管纤维和石墨烯纤维,其微观组成单元具有独特的碳碳共轭分子形态,宏观结构具有高度可调控性,表现出高的比强度、优良的导电性和导热性、以及良好的机械柔韧性等,被广泛应用于先进能源器件的研究和开发,有效促进了柔性可穿戴电子器件的发展。本文综述了烯碳纤维基能源器件包括能量转换和储能器件等的研究和应用进展,具体介绍了烯碳纤维基太阳能电池、湿气发电机、热电发电机、超级电容器以及电化学电池等的最新成果,重点讨论了烯碳纤维基能源器件的制备方法和可穿戴应用,分析了烯碳纤维基储能及能量转换器件面临的问题和挑战,期望能够为未来高性能纤维基可穿戴能源器件的发展提供有价值的研究思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号