首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly ordered interface between LiFePO(4) phase and FePO(4) phase with staging structure along the a axis and perpendicular to the b axis direction has been observed for the first time, in a partially chemically delithiated Li(0.90)Nb(0.02)FePO(4) by advanced aberration-corrected annular-bright-field (ABF) scanning transmission electron microscopy (STEM).  相似文献   

2.
LiFePO4锂嵌脱动力学过程研究   总被引:1,自引:0,他引:1  
采用固相法和微乳液法制备LiFePO4正极材料,制备样品分别用XRD和SEM进行表征,通过交流阻抗和充放电测试电化学性能.结果显示:微乳液法制备样品平均粒径约0.15μm,在2.5-4.0V(vs.Li/Li )范围内、15 mA·g-1电流密度下放电,首次放电容量达到163 mAh·g-1,该样品的表观Li 扩散活化能和表观电荷转移活化能计算值分别为4.95、21.4 kJ·mol-1.制备粒度小的活性物质颗粒有利于减小Li 离子脱嵌动力学限制,提高LiFePO4材料的电化学性能.  相似文献   

3.
While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.  相似文献   

4.
Full-length v-SNARE protein reconstituted in lipid vesicles, when exposed to t-SNARE-reconstituted lipid membrane, results in the self-assembly of a t-/v-SNARE complex in a ring pattern, forming pores and the establishment of continuity between the opposing bilayers. In contrast, when v-SNARE protein alone (without liposomes) is exposed to t-SNARE-reconstituted lipid membrane, they also self-assemble to form t-/v-SNARE complexes, although such complexes fail to possess the characteristic ring pattern, nor do they help in the establishment of continuity between the opposing bilayers. Hence, t-SNAREs and v-SNARE need to be membrane-associated to interact in a circular array to form conducting pores in the presence of calcium. This study demonstrates that, irrespective of their arrangement, both forms of the SNARE complex can be disassembled in the presence of NSF-ATP.  相似文献   

5.
Spectrin molecules extracted from human blood ceil membrane have been examined by atomic force microscopy (AFM) without using shadowing or staining procedures. A drop of the solution containing spectrin molecules was deposited on the freshly deaved mica substrate. After about 1 min, the residual solution was removed with a piece of filter paper. Afterwards the sample was imaged with a home-made atomic force microscope (AFM) in air in a constant force mode. The obtained AFM images revealed that the spectrin molecules prepared from the above procedures exhibit several kinds of structures as follows: (i) the compact rod-like spectrin heterodimers with a length of around 100 nm; (ii) bent or curved linear tetramers with a length of around 200 nm; (iii) somewhat curved spectrin hexamers, octomers or decamers with lengths of about 300, 400, or 500 nm; and (iv) high oligomers with a length above 1 000 nm.  相似文献   

6.
Using the atomic resolution of the field-ion microscope (FIM) and the single-atom identification capability of the time-of-flight atom-probe field-ion microscope, fundamental properties of solid surfaces can be investigated at atomic level. Atomic structures of many surface planes are fully resolved. The chemical composition of a surface can be determined with a single atomic layer spatial resolution. Several interactions of single surface atoms, which are basic to the understanding of many surface phenomena, such as the atom to substrate surface interaction, the adatom-adatom interaction, the adatom-impurity atom interaction, the adatom-plane edge interaction, etc. can all be studied in atomic details. The charge distribution of a single atom, as manifest in its dipole moment and polarizability, can also be studied. Great advantages of FIM investigations include the availability of atomically perfect surface planes, which can be prepared by field evaporation process, and the capability of a direct observation of the atomic images. Although some electronegative atoms cannot be imaged, the surface conditions and the state of the atoms can be characterized by the atom-probe. Basic principles and results of these single-atom FIM studies are presented and discussed.  相似文献   

7.
8.
采用密度泛函(B3LYP)方法计算锂离子电池正极材料LiFePO4/FePO4,净电荷和共价键级的计算结果都表明磷氧原子间作用力最强,锂氧原子间作用力最弱,有利于Li离子在晶格中的自由移动.以Li/LiFePO4锂离子电池的平均电压为3.2 V,和实验值3.4 V基本一致.态密度分析表明FePO4和LiFePO4都是典型的半导体,O原子轨道主要贡献总态密度靠费米能级价带一侧,Fe原子轨道主要贡献总态密度靠费米能级导带一侧.  相似文献   

9.
This work investigated the resistance of Al-contained Li6.75La3Zr1.75Ta0.25O12 (LLZTO) sintered pellets to lithium dendrites. The short-circuiting period for Li/LLZTO/Li cells under a high applied direct current showed positive correlation to the variation in the relative densities of the LLZTO pellets sintered at different temperatures. Lithium dendrites were observed directly inside short-circuited LLZTO electrolytes. Our observations demonstrate that lithium dendrites can grow through grain boundaries and interconnected pores in the ceramic electrolytes.  相似文献   

10.
11.
12.
Presence of inhomogeneous layered structures of ionic liquid (IL) molecules at IL/HOPG and IL/mica interfaces was directly detected and imaged by using frequency-modulation atomic force microscopy. High stability of the layered structures may disturb their interface applications to catalysis and electrochemistry.  相似文献   

13.
Research on Chemical Intermediates - Olivine-type LiFePO4 cathode material was successfully synthesized by a simple method of thermal explosion (TE) using hexamethylenetetramine (C6H12N4) as fuel....  相似文献   

14.
Hydrothermally synthesized LiFePO4 cathode and carbon spherules anode materials were investigated by full-cells for the first time. The assembled half-cells suggest that electrode materials prepared hydrothermally have excellent electrochemical properties. Despite having a capacity loss during the formation process, the assembled LiFePO4/CS full-cells still exhibit an excellent cycling performance with stable coulombic efficiency at 100% and less than 9% capacity fading after 260 cycles, which suggest that hydrothermally fabricated electrode materials have a potential application in EVs and stationary energy storage.  相似文献   

15.
The reaction mechanism underlying the photoinduced linkage isomerization of discrete arsenic-sulfur clusters in the realgar form of tetraarsenic tetrasulfide (alpha-As4S4) to its pararealgar form was studied on a natural specimen of the mineral with a combination of in situ single-crystal X-ray photodiffraction and Fourier transform infrared spectroscopy. The photodiffraction technique provided direct atomic resolution evidence of formation of intermediate As4S5 phase in which half of the realgar molecule is retained in its envelope-type conformation, while the other half is transformed by effective switching of positions of one sulfur and one arsenic atom. The initiation and propagation stages of the process are studied under light and dark conditions, during and after photoexcitation with polychromatic visible light. In the "light" reaction stage, the interatomic and cell parameters averaged over the crystal volume and photoexcitation time remain almost unchanged. The residual electron density features are indicative for formation of a small amount of As4S5 clusters, which at this stage do not affect the overall crystalline order. In the "dark" reaction stage, a set of self-sustainable autocatalytic reactions results in strong and nearly isotropic expansion of the unit cell. The structure in the dark stage represents direct evidence of formation of pararealgar which was obtained in yield of about 5% in the single crystal of realgar. The cell expansion is due to increased mole ratio of clusters of pararealgar relative to realgar and to increased intercluster separation. Due to lattice incompatibility, a higher content of the product results in progressive decrease of crystal quality. Creation of small amount of arsenolite (As2O3) which appears as byproduct in the light stage and remains unreacted in the product mixture was confirmed by far-IR spectroscopy.  相似文献   

16.
LiFePO4-multiwalled carbon nanotubes (MWCNTs) composites were prepared by a hydrothermal method followed by ball-milling and heat treating. Cyclic voltammetry, ac impedance and galvanostatic charge/discharge testing results indicate that LiFePO4-MWCNTs composite exhibits higher discharge capacity and rate capability than pure LiFePO4 at high-rate at room temperature. It is demonstrated that the added MWCNTs not only increase the electronic conductivity and lithium-ion diffusion coefficient but also decrease crystallite size and charge transfer resistance of LiFePO4-MWCNTs composite.  相似文献   

17.
18.
[structure: see text] [structure: see text] New oligomeric chiral macrocyclic ligands have been synthesized using an efficient self-assembly method. High enantioselective cooperativity in the catalytic asymmetric aldol reactions was directly observed using the conceptually novel chiral multinuclear complex catalysts.  相似文献   

19.
We demonstrate that the N(2)-induced ionic hydrate system can be a solution to produce the hydrogen radical from water without direct energy sources such as H(2) and CH(4).  相似文献   

20.
18650-type lithium iron phosphate/graphite cells are cycled at 25 and 55 °C in order to investigate cycle performance and diagnostics for capacity fading. The cell losses more than 30 % of its initial capacity after 600 cycles when cycled at 55 °C compared to a 5 % loss for the cell cycled at 25 °C. There is no evident difference appeared between cathode and anode capacities before and after cycling, but only part of the cathode capacity could be recovered on the first charge after cycling. The loss of cycleable lithium is supposed to be the reason for the capacity fade. And both catalytic reaction of iron deposited on graphite surface and damage of solid–electrolyte interface layer by volume change play important roles in capacity fade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号