首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Group Chromatic Number of Graphs   总被引:2,自引:0,他引:2  
Let G be a graph and A an Abelian group. Denote by F(G, A) the set of all functions from E(G) to A. Denote by D an orientation of E(G). For fF(G,A), an (A,f)-coloring of G under the orientation D is a function c : V(G)↦A such that for every directed edge uv from u to v, c(u)−c(v) ≠ f(uv). G is A-colorable under the orientation D if for any function fF(G, A), G has an (A, f)-coloring. It is known that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the least positive integer m for which G is A-colorable for any Abelian group A of order ≥m, and is denoted by χg(G). In this note we will prove the following results. (1) Let H1 and H2 be two subgraphs of G such that V(H1)∩V(H2)=∅ and V(H1)∪V(H2)=V(G). Then χg(G)≤min{max{χg(H1), maxvV(H2)deg(v,G)+1},max{χg(H2), maxuV(H1) deg (u, G) + 1}}. We also show that this bound is best possible. (2) If G is a simple graph without a K3,3-minor, then χg(G)≤5.  相似文献   

2.
UniversalC*-algebrasC*(A) exist for certain topological *-algebras called algebras with aC*-enveloping algebra. A Frechet *-algebraA has aC*-enveloping algebra if and only if every operator representation ofA mapsA into bounded operators. This is proved by showing that every unbounded operator representation π, continuous in the uniform topology, of a topological *-algebraA, which is an inverse limit of Banach *-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-C*-algebraE(A) ofA. Given aC*-dynamical system (G,A,α), any topological *-algebraB containingC c (G,A) as a dense *-subalgebra and contained in the crossed productC*-algebraC*(G,A,α) satisfiesE(B) =C*(G,A,α). IfG = ℝ, ifB is an α-invariant dense Frechet *-subalgebra ofA such thatE(B) =A, and if the action α onB ism-tempered, smooth and by continuous *-automorphisms: then the smooth Schwartz crossed productS(ℝ,B,α) satisfiesE(S(ℝ,B,α)) =C*(ℝ,A,α). WhenG is a Lie group, theC -elementsC (A), the analytic elementsC ω(A) as well as the entire analytic elementsC є(A) carry natural topologies making them algebras with aC*-enveloping algebra. Given a non-unitalC*-algebraA, an inductive system of idealsI α is constructed satisfyingA =C*-ind limI α; and the locally convex inductive limit ind limI α is anm-convex algebra with theC*-enveloping algebraA and containing the Pedersen idealK a ofA. Given generatorsG with weakly Banach admissible relationsR, we construct universal topological *-algebraA(G, R) and show that it has aC*-enveloping algebra if and only if (G, R) isC*-admissible.  相似文献   

3.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

4.
Summary Let X be a complex Hilbert space, let L(X) be the algebra of all bounded linear operators on X, and let A(X) ⊂ L(X) be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D: A(X) → L(X) satisfying the relation D(AA*A) = D(A) A*A + AD(A*)A + AA*D(A), for all A ∈ A(X). In this case D is of the form D(A) = AB-BA, for all AA(X) and some B L(X), which means that D is a derivation. We apply this result to semisimple H*-algebras.  相似文献   

5.
Group Chromatic Number of Graphs without K5-Minors   总被引:2,自引:0,他引:2  
 Let G be a graph with a fixed orientation and let A be a group. Let F(G,A) denote the set of all functions f: E(G) ↦A. The graph G is A -colorable if for any function fF(G,A), there is a function c: V(G) ↦A such that for every directed e=u vE(G), c(u)−c(v)≠f(e). The group chromatic numberχ1(G) of a graph G is the minimum m such that G is A-colorable for any group A of order at least m under a given orientation D. In [J. Combin. Theory Ser. B, 56 (1992), 165–182], Jaeger et al. proved that if G is a simple planar graph, then χ1(G)≤6. We prove in this paper that if G is a simple graph without a K 5-minor, then χ1(G)≤5. Received: August 18, 1999 Final version received: December 12, 2000  相似文献   

6.
Bounds on the Distance Two-Domination Number of a Graph   总被引:1,自引:0,他引:1  
 For a graph G = (V, E), a subset DV(G) is said to be distance two-dominating set in G if for each vertex uVD, there exists a vertex vD such that d(u,v)≤2. The minimum cardinality of a distance two-dominating set in G is called a distance two-domination number and is denoted by γ2(G). In this note we obtain various upper bounds for γ2(G) and characterize the classes of graphs attaining these bounds. Received: May 31, 1999 Final version received: July 13, 2000  相似文献   

7.
Simple graphs are considered. Let G be a graph andg(x) andf(x) integer-valued functions defined on V(G) withg(x)⩽f(x) for everyxɛV(G). For a subgraphH ofG and a factorizationF=|F 1,F 2,⃛,F 1| ofG, if |E(H)∩E(F 1)|=1,1⩽ij, then we say thatF orthogonal toH. It is proved that for an (mg(x)+k,mf(x) -k)-graphG, there exists a subgraphR ofG such that for any subgraphH ofG with |E(H)|=k,R has a (g,f)-factorization orthogonal toH, where 1⩽k<m andg(x)⩾1 orf(x)⩾5 for everyxɛV(G). Project supported by the Chitia Postdoctoral Science Foundation and Chuang Xin Foundation of the Chinese Academy of Sciences.  相似文献   

8.
Let A be a finitary algebra over a finite field k, and A- \textmod\text{mod} the category of finite dimensional left A-modules. Let H(A)\mathcal{H}(A) be the corresponding Hall algebra, and for a positive integer r let D r (A) be the subspace of H(A)\mathcal{H}(A) which has a basis consisting of isomorphism classes of modules in A- \textmod\text{mod} with at least r + 1 indecomposable direct summands. If A is the path algebra of the quiver of type A n with linear orientation, then D r (A) is known to be the kernel of the map from the twisted Hall algebra to the quantized Schur algebra indexed by n + 1 and r. For any A, we determine necessary and sufficient conditions for D r (A) to be an ideal and some conditions for D r (A) to be a subring of H(A)\mathcal{H}(A). For A the path algebra of a quiver, we also determine necessary and sufficient conditions for D r (A) to be a subring of H(A)\mathcal{H}(A).  相似文献   

9.
Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, BB(H), define the binary relation A ≤* B by A*A = A*B and AA* = AB*. Then (B(H), “≤*”) is a partially ordered set and the relation “≤*” is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on B s (H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator.  相似文献   

10.
Let G be a graph with vertex set V(G), and let k ⩾ 1 be an integer. A subset DV(G) is called a k-dominating set if every vertex υV(G)-D has at least k neighbors in D. The k-domination number γ k (G) of G is the minimum cardinality of a k-dominating set in G. If G is a graph with minimum degree δ(G) ⩾ k + 1, then we prove that
$ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}. $ \gamma _{k + 1} (G) \leqslant \frac{{|V(G)| + \gamma _k (G)}} {2}.   相似文献   

11.
For a transitive Lie algebroid A on a connected manifold M and its representation on a vector bundle F, we define a morphism of cohomology groups rk: Hk(A,F) → Hk(Lx,Fx), called the localization map, where Lx is the adjoint algebra at x ∈ M. The main result in this paper is that if M is simply connected, or H (LX,FX) is trivial, then T is injective. This means that the Lie algebroid 1-cohomology is totally determined by the 1-cohomology of its adjoint Lie algebra in the above two cases.  相似文献   

12.
Let G be a digraph with vertex set V(G) and arc set E(G) and let g = (g , g +) and ƒ = (ƒ , ƒ +) be pairs of positive integer-valued functions defined on V(G) such that g (x) ⩽ ƒ (x) and g +(x) ⩽ ƒ +(x) for each xV(G). A (g, ƒ)-factor of G is a spanning subdigraph H of G such that g (x) ⩽ id H (x) ⩽ ƒ (x) and g +(x) ⩽ od H (x) ⩽ ƒ +(x) for each xV(H); a (g, ƒ)-factorization of G is a partition of E(G) into arc-disjoint (g, ƒ)-factors. Let = {F 1, F 2,…, F m} and H be a factorization and a subdigraph of G, respectively. is called k-orthogonal to H if each F i , 1 ⩽ im, has exactly k arcs in common with H. In this paper it is proved that every (mg+m−1,m+1)-digraph has a (g, f)-factorization k-orthogonal to any given subdigraph with km arcs if k ⩽ min{g (x), g +(x)} for any xV(G) and that every (mg, mf)-digraph has a (g, f)-factorization orthogonal to any given directed m-star if 0 ⩽ g(x) ⩽ f(x) for any xV(G). The results in this paper are in some sense best possible.   相似文献   

13.
Let F be a field, let A be a vector space over F, and let GL(F, A) be the group of all automorphisms of the space A. If H is a subgroup of GL(F, A), then we set aug dimF (H) = dimF (AFH)), where ωFH is the augmentation ideal of the group ring FH. The number aug dimF (H) is called the augmentation dimension of the subgroup H. In the present paper, we study locally solvable linear groups with minimality condition for subgroups of infinite augmentation dimension. __________ Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 57, No. 11, pp. 1476–1489, November, 2005.  相似文献   

14.
Abraham  Uri  Bonnet  Robert  Kubiś  Wiesław  Rubin  Matatyahu 《Order》2003,20(3):265-290
Let (P,≤) be a partially ordered set. The poset Boolean algebra of P, denoted F(P), is defined as follows: The set of generators of F(P) is {x p  : pP}, and the set of relations is {x p x q =x p  : pq}. We say that a Boolean algebra B is well-generated, if B has a sublattice G such that G generates B and (G,≤ B |G) is well-founded. A well-generated algebra is superatomic. THEOREM 1. Let (P,≤) be a partially ordered set. The following are equivalent. (i) P does not contain an infinite set of pairwise incomparable elements, and P does not contain a subset isomorphic to the chain of rational numbers, (ii) F(P) is superatomic, (iii) F(P) is well-generated. The equivalence (i) ⇔ (ii) is due to M. Pouzet. A partially ordered set W is well-ordered, if W does not contain a strictly decreasing infinite sequence, and W does not contain an infinite set of pairwise incomparable elements. THEOREM 2. Let F(P) be a superatomic poset algebra. Then there are a well-ordered set W and a subalgebra B of F(W), such that F(P) is a homomorphic image of B. This is similar but weaker than the fact that every interval algebra of a scattered chain is embeddable in an ordinal algebra. Remember that an interval algebra is a special case of a poset algebra. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck’s notion of differential operators on a commutative algebra in such a way that derivations of the commutative algebra are replaced by \mathbbDer(A){\mathbb{D}{\rm er}(A)}, the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A){\mathcal{F}(A)}, a certain ‘Fock space’ associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)){\mathcal{D}(\mathcal{F}(A))} of differential operators is filtered and gr D(F(A)){\mathcal{D}(\mathcal{F}(A))}, the associated graded algebra, is commutative in some ‘wheeled’ sense. The resulting ‘wheeled’ Poisson structure on gr D(F(A)){\mathcal{D}(\mathcal{F}(A))} is closely related to the double Poisson structure on TA \mathbbDer(A){T_{A} \mathbb{D}{\rm er}(A)} introduced by Van den Bergh. Specifically, we prove that gr D(F(A)) @ F(TA(\mathbbDer(A)),{\mathcal{D}(\mathcal{F}(A))\cong\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)),} provided the algebra A is smooth. Our construction is based on replacing vector spaces by the new symmetric monoidal category of wheelspaces. The Fock space F(A){\mathcal{F}(A)} is a commutative algebra in this category (a “commutative wheelgebra”) which is a structure closely related to the notion of wheeled PROP. Similarly, we have Lie, Poisson, etc., wheelgebras. In this language, D(F(A)){\mathcal{D}(\mathcal{F}(A))} becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper, we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on \mathbbDer(A){\mathbb{D}{\rm er}(A)} gives rise to a second-order (wheeled) differential operator, a noncommutative analogue of the Batalin-Vilkovisky (BV) operator, that makes F(TA(\mathbbDer(A))){\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)))} a BV wheelgebra. In the final section, we explain how the wheeled differential operators D(F(A)){\mathcal{D}(\mathcal{F}(A))} produce ordinary differential operators on the varieties of n-dimensional representations of A for all n ≥ 1.  相似文献   

16.
Given anm-tempered strongly continuous action α of ℝ by continuous*-automorphisms of a Frechet*-algebraA, it is shown that the enveloping ↡-C *-algebraE(S(ℝ, A, α)) of the smooth Schwartz crossed productS(ℝ,A , α) of the Frechet algebra A of C-elements ofA is isomorphic to the Σ-C *-crossed productC *(ℝ,E(A), α) of the enveloping Σ-C *-algebraE(A) ofA by the induced action. WhenA is a hermitianQ-algebra, one getsK-theory isomorphismRK *(S(ℝ, A, α)) =K *(C *(ℝ,E(A), α) for the representableK-theory of Frechet algebras. An application to the differential structure of aC *-algebra defined by densely defined differential seminorms is given.  相似文献   

17.
For digraphs D and H, a mapping f : V(D) → V(H) is a homomorphism of D to H if uvA(D) implies f(u) f(v) ∈ A(H). If, moreover, each vertex uV(D) is associated with costs c i (u), iV(H), then the cost of the homomorphism f is ∑ uV(D) c f(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H (abbreviated MinHOM(H)). The problem is to decide, for an input graph D with costs c i (u), uV(D), iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost. We obtain a dichotomy classification for the time complexity of MinHOM(H) when H is an oriented cycle. We conjecture a dichotomy classification for all digraphs with possible loops.  相似文献   

18.
Let G be a compact group whose local weight b(G) has uncountable cofinality. Let H be an amenable locally compact group and A(G × H) be the Fourier algebra of G × H. We prove that the group von Neumann algebra VN(G × H) = A(G × H)* has the weak uniform A(G × H)** factorization property of level b(G). As a corollary we show that A(G × H) is strongly Arens irregular, and the topological centre of UC 2(G × H)* is equal to the Fourier–Stieltjes algebra B(G × H).  相似文献   

19.
Let E Aff(Γ,G, m) be the set of affine equivalence classes of m-dimensional complete flat manifolds with a fixed fundamental group Γ and a fixed holonomy group G. Let n be the dimension of a closed flat manifold whose fundamental group is isomorphic to Γ. We describe E Aff(Γ,G, m) in terms of equivalence classes of pairs (ε, ρ), consisting of epimorphisms of Γ onto G and representations of G in ℝ m-n . As an application we give some estimates of card E Aff(Γ,G, m).  相似文献   

20.
Let г denote a connected valued Auslander-Reiten quiver, let ℒ(γ) denote the free abelian group generated by the vertex setγ 0 and let ℒ(Γ) be the universal cover ofг with fundamental groupG. It is proved that whenγ is a finite connected valued Auslander-Reiten quiver,(γ) is a Lie subalgebra of(г), and is just the “orbit” Lie algebra ℒ( )/G, where ℋ (г)1 is the degenerate Hall algebra ofг and ℒ( )/G is the “orbit” Lie algebra induced by .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号