首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

2.
Tetradentate N4-type organic ligands containing two 5-(2-pyridylmethylidene)-2-thio-3,5-dihydro-4H-imidazol-4-one fragments linked by two-, four-, or six-carbon polymethylene bridges between the sulfur atoms were synthesized. Mono- and dinuclear complexes of these ligands with copper(II) chloride, as well as with copper(I) and copper(II) perchlorates, were prepared. The structure of the coordination compound (5Z,5′Z)-2,2′-(butane-1,2-diyl-disulfanyldiyl)bis-5-(2-pyridylmethylidene)-3-phenyl-3,5-dihydro-4H-imidazol-4-one with copper(I) perchlorate was established by X-ray diffraction. The copper atom in this complex is in a distorted tetrahedral coordination formed by four nitrogen atoms of two imidazole and two pyridine rings. The perchlorate anion is located in the outer sphere of the complex and is not involved in the coordination with the copper ion. The electrochemical study of the ligands and the complexes was carried out by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes under study occurs at the metal atom. The length of the polymethylene bridge in the ligand has only a slight effect on the redox properties of the ligands and the complexes.  相似文献   

3.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

4.
Contributions of structural (macroring distortion) and polarization (in asymmetrically substituted derivatives) effects into the reactivity and chromophoric properties of substituted porphyrins were revealed on the basis of the kinetics of complex formation of nona-, deca-, undeca-, and dodecasubstituted porphyrins (meso-phenyltetrabenzoporphyrins) with Zn(OAc)2 in pyridine and the electronic absorption spectra of the ligands and their complexes with Zn(II) and Cu(II) in pyridine and N,N-dimethylformamide (DMF). Dodecaphenyl substitution produces a weaker ring distortion in the more aromatic tetrabenzoporphyrin compared with porphyrins themselves. Irrespective of the degree of macroring nonplanarity, the Zn (II) and Cu complexes of tetrabenzoporphyrins with increasing degree of meso-phenyl substitution meet a spectral stability criterion.  相似文献   

5.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

6.
Reaction of 1-propylamino-4-acetato-1,4,7-triazacyclononane (L1), 1-benzyl-4-acetato-1,4,7-triazacyclononane (L2) and 1-benzyl-4-propylamino-1,4,7-triazacyclononane (L3) with a copper(II) salt gave Na2[CuL1](ClO4)3(1a), [CuL2]Cl (2) and [Cu2L32](ClO4)4.5H2O (3), respectively. [CuL4]ClO4 (4) was formed by reacting 1-formyl-4-ethylacetato-1,4,7-triazacyclononane with cupric chloride in aqueous solution. The X-ray crystal structures of the complexes reveal that the ligands generate distorted square pyramidal or square planar coordination environments about the Cu(II) centre, but in three complexes (1b, 3 and 4) weak interactions to an oxygen atom from a perchlorate anion and, in the case of 4, also to an amide nitrogen leading to tetragonally elongated octahedral Cu(II) geometries. In 4, the formyl group is found to reduce the coordinating ability of the macrocyclic nitrogen to which it is attached, as evidenced by the weak CuN interaction. The formation of five-membered chelate rings on coordination of the ligands further contributes to the distortion from the ideal geometries. The crystal lattices contain a number of novel supramolecular features. 1a contains a negatively charged sodium perchlorate chain of composition [Na2(ClO4)3]x(x-), with a complex series of Na-O-Na bridges flanked by [CuL1]+ units, while 3 contains highly complex hydrogen bonded sheets approximately 20 A thick that stack through van der Waals interactions. One-dimensional chains comprised of copper complexes are found in 2 and 4, and are held together by hydrogen bonds in 2 and acetate bridges between the copper cations in 4. The solution EPR spectra indicate that the copper(II) centres exist in isolated distorted square pyramidal (possibly square planar for 4) environments, while in the solid state there is evidence for the existence of weak exchange and dipole-dipole coupling for some complexes.  相似文献   

7.
The structures of new polymeric compounds containing Cu(II) ions and btp (2,6-bis(N'-1,2,4-triazolyl)pyridine) ligands have been determined. The btp ligands bridge Cu(II) ions to form double zigzag chains, [Cu(ClO4)2(btp)2] 3 with perchlorate anions, and form single zigzag chains, [Cu(btp)(H2O)4](SO4).2H2O 4 with sulfate anions. The polymeric compound 3 was found to effectively catalyze the epoxide ring-opening reaction with methanol, while polymeric compound 4 was almost inactive with epoxides under the same conditions. The polymeric compound 3 showed an efficient catalytic activity and regioselective reactivity in the ring opening of epoxides and allowed reuse without a significant loss of activity through three runs with epoxides.  相似文献   

8.
A series of new nickel(II) perchlorate complexes containing an α-diimine(enR) and the anion of a β-dione (1,3-ketoenol or 1,3-ketoester, βH) was prepared and characterized. The composition and the overall structure of the new chelates depend on ligand concentration, on steric and electronic effects induced by substituents within the ligands and the ability of the perchlorate group to coordinate. The IR and electronic excitation spectra of [Ni(enR)2β]ClO4 and [Ni(enR)β(O2ClO2)] indicate, in conjunction with other physicochemical measurements, bidentate coordination of the ligands and replacement of the (O,O′) perchlorato group by basic solvents. The structure of the new chelates was further supported by an X-ray structure analysis of [Ni(ncup)2Etacet]ClO4, where ncup denotes neocuproine and Etacet the anion of the ethyl acetoacetate (orthorhombic, space group Pc21n, a = 14.087(5), b = 14.713(5) and c = 15.952(5) Å, Z = 4). The coordination sphere of nickel is a distorted octahedron, arised from the chromophore NiN4O2, in which the base is favored by three neocuproine nitrogens and one Etacet oxygen. The apical sites are occupied by the remaining oxygen and nitrogen atoms, one from Etacet and one from neocuproine respectively.  相似文献   

9.
Structures of Cu(I) and Cu(II) complexes of sterically hindered tripyridine ligands RL = tris(6-methyl-2-pyridyl)methane (HL), 1,1,1-tris(6-methyl-2-pyridyl)ethane (MeL), and 1,1,1-tris(6-methyl-2-pyridyl)propane (EtL), [Cu(RL)(MeCN)]PF(6) (1-3), [Cu(RL)(SO(4))] (4-6), and [Cu(RL)(NO(3))(2)] (7-9), have been explored in the solid state and in solution to gain some insights into modulation of the copper coordination structures by bridgehead alkyl groups (CH, CMe, and CEt). The crystal structures of 1-9 show that RL binds a copper ion in a tridentate facial-capping mode, except for 3, where EtL chelates in a bidentate mode with two pyridyl nitrogen atoms. To avoid the steric repulsion between the bridgehead alkyl group and the 3-H(py) atoms, the pyridine rings in Cu(I) and Cu(II) complexes of MeL and EtL shift toward the Cu side as compared to those in Cu(I) and Cu(II) complexes of HL, leading to the significant differences in the nonbonding interatomic distances, H.H (between the 3-H(py) atoms), N.N (between the N(py) atoms), and C.C (between the 6-Me carbon atoms), the Cu-N(py), Cu-N(MeCN), and Cu-O bond distances, and the tilt of the pyridine rings. The copper coordination geometries in 4-6, where a SO(4) ligand chelates in a bidentate mode, are varied from a square pyramid of 4 to distorted trigonal bipyramids of 5 and 6. Such structural differences are not observed for 7-9, where two NO(3) ligands coordinate in a monodentate mode. The structures of 1-9 in solution are investigated by means of the electronic, (1)H NMR, and ESR spectroscopy. The (1)H NMR spectra show that the structures of 1-3 in the solid state are kept in solution with rapid coordination exchange of the pyridine rings. The electronic and the ESR spectra reveal the structural changes of 5 and 6 in solution. The bridgehead alkyl groups and 6-Me groups in the sterically hindered tripyridine ligand play important roles in modulating the copper coordination structures.  相似文献   

10.
The novel tripodal ligand N-(bis(2-pyridyl)methyl)-2-pyridinecarboxamide (Py3AH) affords monomeric and dimeric copper(II) complexes with coordinated carboxamido nitrogens. Although many chloro-bridged dimeric copper(II) complexes are known, [Cu(Py3A)(Cl)] (1) remains monomeric and planar with a pendant pyridine and does not form either a chloro-bridged dimer or the ligand-shared dimeric complex [Cu(Py3A)(Cl)]2 (4) in solvents such as CH3CN. When 1 is dissolved in alcohols, square pyramidal alcohol adducts [Cu(Py3A)(Cl)(CH3OH)] (2) and [Cu(Py3A)(Cl)(C2H5OH)] (3) are readily formed. In 2 and 3, the ROH molecules are bound at axial site of copper(II) and the weak axial binding of the ROH molecule is strengthened by intramolecular hydrogen bonding between ROH and the pendant pyridine nitrogen. Two ligand-shared dimeric species [Cu(Py3A)(Cl)]2 (4) and [Cu(Py3A)]2(ClO4)2 (5) have also been synthesized in which the pendant pyridine of one [Cu(Py3A)] unit completes the coordination sphere of the other [Cu(Py3A)] neighbor. These ligand-shared dimers are obtained in aqueous solutions or in complete absence of chloride in the reaction mixtures.  相似文献   

11.

Abstract  

The interactions of Cu(II), Zn(II), and Al(III) with 1,6-dimethyl-4-hydroxy-3-pyridinecarboxylic acid (DQ716) and 2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid (DT726), possible chelating agents in Alzheimer’s disease, were investigated in aqueous solution. The proton dissociation constants of the ligands, the stability constants, and the coordination modes of the metal complexes formed were determined by pH-potentiometric, UV–vis spectrophotometric, and 1H NMR methods. The nitrogen of the pyridine ring changes the proton affinity of the carboxylate and phenolate moieties and these pyridine derivatives form stronger complexes with Cu(II), Zn(II), and Al(III) than salicylic acid. Interactions of the ligands with human serum albumin as their potential transporter in blood were investigated at physiological pH through ultrafiltration by UV–vis and fluorescence spectroscopy.  相似文献   

12.
Synthesis of the 2,2'-dipyridylamine derivatives di-2-pyridylaminomethylbenzene 1, 1,2-bis(di-2-pyridylaminomethyl)benzene 2, 1,3-bis(di-2-pyridylaminomethyl)benzene 3, 2,6-bis(di-2-pyridylaminomethyl)pyridine 4, 1,4-bis(di-2-pyridylaminomethyl)benzene 5, and 1,3,5-tris(di-2-pyridylaminomethyl)benzene 6 are reported together with the single-crystal X-ray structures of 2, 3, and 5. Reaction of individual salts of the type AgX (where X = NO(3)(-), PF(6)(-), ClO(4)(-), or BF(4)(-)) with the above ligands has led to the isolation of thirteen Ag(I) complexes, nine of which have also been characterised by X-ray diffraction. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a range of coordination arrangements. A series of liquid-liquid (H(2)O/CHCl(3)) extraction experiments of Ag(I) with varying concentrations of 1-6 in the organic phase have been undertaken, with the counter ion in the aqueous phase being respectively picrate, perchlorate and nitrate. In general, extraction efficiencies for a given ionophore followed the Hofmeister order of picrate > perchlorate > nitrate; in each case the tris-dpa derivative 6 acting as the most efficient extractant of the six systems investigated. Competitive seven-metal bulk membrane transport experiments (H(2)O/CHCl(3)/H(2)O) employing the above ligands as the ionophore in the organic phase and equimolar concentrations of Co(II), Ni(II), Zn(II), Cu(II), Cd(II), Pb(II) and Ag(I) in the aqueous source phase were also undertaken, with transport occurring against a pH gradient. Under the conditions employed 1 and 5 yielded negligible transport of any of the metals present in the source phase while sole transport selectivity for Ag(I) was observed for 2-4 and 6.  相似文献   

13.
Deprotonation of the tridentate isoindoline ligand 1,3-bis[2-(4-methylpyridyl)imino]-isoindoline, 4'-MeLH, and reaction with hydrated zinc(II) perchlorate produces an unexpected trinuclear Zn(II) complex, [Zn(3)(4'-MeL)(4)](ClO(4))(2).5H(2)O (1), whereas reaction with hydrated copper(II) perchlorate in methanol produces the expected mononuclear product, [Cu(4'-MeL)(H(2)O)(2)]ClO(4) (2). X-ray diffraction shows that the trinuclear Zn(II) complex (1) contains a linear zinc backbone, and the arrangement of ligands about the outer chiral zinc(II) atoms is helical. The two terminal zinc ions exhibit approximate C(2) site symmetry, with tetrahedral coordination by two pyrrole and two pyridyl nitrogen atoms of the potentially tridentate isoindoline ligands. The central zinc ion exhibits approximate tetrahedral symmetry, with coordination by four pyridyl nitrogen atoms of four different isoindoline ligands. Pyridyl-pyrrole intramolecular pi-stacking interactions contribute to the stability of the trinuclear cation. The structure of the mononuclear copper(II) complex cation in 2 is best described as a distorted trigonal bipyramid. The isoindoline anion binds Cu(II) in both axial positions and one of the equatorial positions; water molecules occupy the other two equatorial positions.  相似文献   

14.
Abstract

Four new Schiff-base ligands have been prepared from the condensation of 3-formyl-4-hy-droxy-1,8-naphthyridin-2-one with different diamines and a triamine, H2La-H2Ld. Two series of Ni(II) and Cu(II) complexes with the four ligands were also prepared. The ligands and their metal complexes were characterized by chemical analyses, IR, Far-IR, electronic, ESR and mass spectra as well as magnetic measurements and X-ray diffraction patterns.

Different products for Ni(II) and Cu(II) were obtained in similar reactions with the same metal salt, depending on the nature of the ligand. Different geometries were also obtained depending on the counter anion of metal salt. Thus, violet square-planar Cu(II) complexes were obtained with Cu(OAc)2. H2O and green octahedral ones with CuCl2. 2H2O, except the reaction with ligand H2Ld which gave only an octahedral product whether the anion was acetate, chloride or perchlorate. Electronic and ESR spectra were used to differentiate between the two geometries of the Cu(II) complexes. The green octahedral Cu(II) complexes undergo irreversible thermochromism to the violet square-planar complexes except the copper complex of the ligand H2Ld which did not not show any color change and retained its octahedral geometry. Based on the magnetic moments and thermal analyses, only one Ni(II) complex of the Schiffbase ligand H2Lc undergoes reversible thermochromism from green (octahedral) to red (squareplanar). The reverse change of the thermal product (red) to the parent complex (green) proceeded on exposure to atmospheric air for a few minutes. On the other hand, Ni(II) complexes of ligands H2La and H2Lb have stable square-planar geometry and all efforts to add other ligands such as H2O or pyridine to these complexes failed to yield other products. The corresponding Cu(II) complexes were easily transformed to their octahedral geometry by adding H2O or pyridine and heating.  相似文献   

15.
The structures of [Cu(2-Brbz)2(4PM)2(H2O)] (1) and [Cu(2-Brbz)2(NIA)2] · 2H2O 2 [where 2-Brbz is the 2-bromobenzoate anion, 4-PM is the 4-pyridylmethanol and NIA is nicotinamide] have been determined by X-ray and characterized by EPR spectroscopy. The Cu2+ cation in 1 is coordinated by a pair of oxygens from monodentate 2-bromobenzoate anions by a pair of pyridine nitrogens from monodentate 4-pyridylmethanol ligands and finally by a water forming a tetragonal-pyramidal coordination polyhedron. The Cu2+ cation in 2 is coordinated by two pairs of oxygens from the asymmetric bidentate 2-bromobenzoate anions and by a pair of pyridine nitrogen atoms from the monodentate nicotinamide in trans positions, forming an extremely elongated bipyramid. The molecules of both complexes are linked by O–H ··· O, C–H ··· O and for 2 by N–H ··· O hydrogen bonds, which create three-dimensional hydrogen-bonding networks. EPR spectra of 1 and 2 are in agreement with X-ray data. Nicotinamide as well as 4-pyridylmethanol are suitable ligands for construction of hydrogen bonding coordination polymers.  相似文献   

16.
Seven new pyridine dicarboxamide ligands H2L(1-7) have been synthesised from condensation reactions involving pyridine-2,6-dicarboxylic acid (H2dipic), pyridine-2,6-dicarbonyl dichloride or 2,6-diaminopyridine with heterocyclic amine or carboxylic acid precursors. Crystallographic analyses of N,N'-bis(2-pyridyl)pyridine-2,6-dicarboxamide monohydrate (H2L8 x H2O), N,N'-bis[2-(2-pyridyl)methyl]pyridine-2,6-dicarboxamide and N,N'-bis[2-(2-pyridyl)ethyl]pyridine-2,6-dicarboxamide monohydrate revealed extensive intramolecular hydrogen bonding interactions. 2,6-Bis(pyrazine-2-carboxamido)pyridine (H2L6) and 2,6-bis(pyridine-2-carboxamido)pyridine (H2L7) reacted with copper(II) acetate monohydrate to give tricopper(II) complexes [Cu3(L)2(mu2-OAc)2]. X-Ray crystallography confirmed deprotonation of the amidic nitrogen atoms and that the (L6,7)2- ligands and acetate anions hold three copper(II) ions in approximately linear fashion. H2L8. Reacted with copper(II) tetrakis(pyridine) perchlorate to give [Cu(L8)(OH2)]2 x 2H2O, in which (L8)2- was tridentate through the nitrogen atoms of the central pyridine ring and the deprotonated carboxamide groups at one copper centre, with one of the terminal pyridyl rings coordinating to the other copper atom in the dimer. The corresponding reaction using H2L7 gave [Cu3(L7)2(py)2][ClO4]2, which transformed during an attempted recrystallisation from ethanol under aerobic conditions to a tetracopper(II) complex [Cu4(L7)2(L7-O)2].  相似文献   

17.
Summary Ethylenediaminecopper(II) perchlorate complexes of the [Cu(ethylenediamine)L2(ClO4)2] type, where L = imidazole, N-methylimidazole, 2-methylimidazole, 4-methylimidazole, and pyridine, have been prepared and characterized by elemental analyses, and electronic, vibrational, and e.p.r. spectroscopic measurements. The molecular structure of [Cu(ethylenediamine)(pyridine)2(ClO4)2] has been determined by three-dimensional X-ray diffraction data. The CuII ion is coordinated by one ethylenediamine and two pyridine ligands forming an equatorial plane, and by two perchlorate anions located on the z axis. The pyridine ligands incline at 54.9 ° to the CuN4 plane suggesting virtually no -interaction in the complex. Similar structures with a CuN4 coordination plane are proposed for other complexes based on the spectroscopic data. The bonding properties of these complexes are elucidated and discussed with reference to the electronic structures deduced from Gaussian analyses of their LF spectra.  相似文献   

18.
A series of ligands (1-4) based on a 2,6-di(pyrimidin-4-yl)pyridine scaffold have been synthesized, and their abilities to form complexes with Zn(II) and Cu(II) have been determined using UV/vis spectroscopy in buffered aqueous solution (0.01 M N-[2-hydroxyethyl]piperazine-N'-[3-ethanesulfonic acid] (HEPES) at pH = 6.8). The Zn(II) complex of 1 was determined to have a formation constant of 8.4 x 10(3) M(-)(1) while the formation constant of the Cu(II) complex was found to be 1 x 10(6) M(-)(1). The presence of auxiliary amines in 2 increased the stability of the Zn(II) complex relative to that of 1 by a factor of over 40, suggesting possible coordination of the auxiliaries to the Zn(II) center. The guanidinium and 2-amino-4,5-dihydro-imidazolinium groups of 3 and 4 considerably diminished the stability of the Zn(II) and Cu(II) complexes relative to those of 1. X-ray crystal structures of 1-Zn, 3-Zn, 4, and 4-Zn were obtained and are discussed. A significant increase in the stability of 3-Zn, but not in the stability 1-Zn, was observed upon the addition of 1 equiv of sodium phosphate, implicating a stabilizing interaction of the guanidinium groups of 3-Zn and the phosphate anion.  相似文献   

19.
A new series of ligands, containing one (L1H(2)-L4H(2)) or two (L5H(4)-L6H(4)) 1,4,8,11-tetraaza-5,7-dione units and functionalized with a propargyl group on the C atom between the C=O moieties, has been synthesized. Protonation constants for the ligands and formation constants of their Cu(2+) complexes have been determined in water, and the coordination geometry of the complexes existing at various pH values has been investigated by coupled pH-metric and spectrophotometric titrations. Ligands capable of simple uptake of Cu(2+) with the formation of neutral, square-planar complexes containing the -2-charged diamino-diimido donor sets and ligands containing further coordinating groups (quinoline or pyridine) capable of single and double cation translocation have been investigated. The role of the substituents on the amino groups and the structural role played by the propargyl group have been examined as regards Cu(2+) complexation and translocation. In the double-translocating ligand L6H(4), when the two Cu(2+) ions move inside the diamino-diamido donor set, the slim propargyl group allows an unprecedented folding of the whole ligand with apical coordination of one pyridine to form a five-coordinate, square-pyramidal Cu(2+) ion. The crystal and molecular structures of this unusual [L6Cu(2)] complex have been determined by X-ray diffraction. Finally, oxidation of Cu(2+) to Cu(3+) has been studied by cyclic voltammetry in water, which revealed that the redox reaction occurs only when the copper cation is within the diamino-diimido compartment. Moreover, both functionalization of the primary amines with bulky substituents and apical coordination of Cu(2+) make access to the 3+ oxidation state more difficult and disrupt the reversibility of the electrochemical process.  相似文献   

20.
Copper(II) complexes with reduced Schiff base ligands of amino acids possessing nonpolar side chains with salicylaldehyde have been synthesized. Ternary complexes with imidazole, 1,10-phenanthroline, and pyridine have been prepared and characterized for N-(2-hydroxybenzyl)-D,L-alanine. The crystal structures of [(N-(2-hydroxybenzyl)-D,L-alanine)(1,10-phenanthroline)Cu(II)] monohydrate ([Cu(SAla)phen].H(2)O) and [(N-(2-hydroxybenzyl)-D,L-alanine)(imidazole)Cu(II)] ([Cu(SAla)Him]), have been determined. [Cu(SAla)phen].H(2)O crystallized in space group P&onemacr;, with a = 8.718(2) ?, b = 10.886(3) ?, c = 11.693(2) ?, alpha = 71.32(2) degrees, beta = 85.27(2) degrees, gamma = 70.21(2) degrees, and Z = 2. The copper atom is five coordinate, with SAla acting as a tridentate ONO chelator through the carboxylato and phenolato oxygens and the amine nitrogen. The remaining donors are provided by the phen nitrogens. [Cu(SAla)Him] crystallized in space group P2(1)/n, with a = 10.353(1) ?, b = 6.714(1) ?, c = 18.769(2) ?, beta = 91.71(1) degrees, and Z = 4. The copper atom is four coordinate, with SAla acting as a tridentate ONO chelator with the neutral imidazole moiety coordinated through nitrogen. In both complexes the ligand has two chiral centers due to the coordination of the N. Molecular mechanics calculations show that unfavorable steric interactions would occur in the nonobserved R,R and S,S diastereomers. Compounds prepared have been characterized by a range of physicochemical techniques. The complexes may serve as stable models for the intermediates in enzymatic amino acid transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号