共查询到20条相似文献,搜索用时 15 毫秒
1.
A coarse graining procedure aimed at reproducing both the chain structure and dynamics in melts of linear monodisperse polymers is presented. The reference system is a bead-spring-type representation of the melt. The level of coarse graining is selected equal to the number of beads in the entanglement segment, Ne. The coarse model is still discrete and contains blobs each representing Ne consecutive beads in the fine scale model. The mapping is defined by the following conditions: the probability of given state of the coarse system is equal to that of all fine system states compatible with the respective coarse state, the dissipation per coarse grained object is similar in the two systems, constraints to the motion of a representative chain exist in the fine phase space, and the coarse phase space is adjusted such to represent them. Specifically, the chain inner blobs are constrained to move along the backbone of the coarse grained chain, while the end blobs move in the three-dimensional embedding space. The end blobs continuously redefine the diffusion path for the inner blobs. The input parameters governing the dynamics of the coarse grained system are calibrated based on the fine scale model behavior. Although the coarse model cannot reproduce the whole thermodynamics of the fine system, it ensures that the pair and end-to-end distribution functions, the rate of relaxation of segmental and end-to-end vectors, the Rouse modes, and the diffusion dynamics are properly represented. 相似文献
2.
Chain diffusion is studied in mixtures of bidisperse linear polymers of same chemical identity by means of simulations. The two subpopulations are moderately to highly entangled, with the shorter chain length N(S), fulfilling N(S)N(e)> or =5. To this end, a coarse grained model calibrated to reproduce both the structure and dynamics of chains in monodisperse entangled melts is used [A. Rakshit and R. C. Picu, J. Chem. Phys. 125, 164907 (2006)]. Its performance in reproducing chain dynamics in a polydisperse melt is tested by extensively comparing the results with those obtained from an equivalent fine scale representation of the same system (a bead-spring model). The coarse grained model is used further to investigate the scaling of the diffusion coefficient with the length of the two types of chains and its dependence on the respective fractions. The model reproduces many features observed experimentally. For example, the diffusion coefficient of one of the chain types decreases with increasing the length of the other type chains. It is shown that, in this model, this effect is not linked to constraint release. When the matrix chains become sufficiently long, their length does not influence the diffusion coefficient of the short chains anymore. The diffusion coefficient of the short chains scales with their weight fraction in a manner consistent with experimental observations. In mixtures, the dynamics of the short chains is slower and that of the long chains is marginally faster than in their respective monodisperse melts. 相似文献
3.
Bates MA 《The Journal of chemical physics》2004,120(4):2026-2033
We extend the bond fluctuation model, originally devised to investigate polymer systems, to contain anisotropic interactions suitable for the simulation of large flexible molecules such as liquid crystalline polymers and dendrimers. This extended model coarse grains the interaction between the flexible chains at a similar level of detail to the mesogenic units. Suitable interaction parameters are obtained by performing trial simulations on a low molar mass liquid crystalline system. The phase diagram of this system is determined as a function of the molecular stiffness. The nematic to isotropic transition temperature is found to increase with increasing stiffness. 相似文献
4.
Nazarov PV Apanasovich VV Lutkovski VM Yatskou MM Koehorst RB Hemminga MA 《Journal of chemical information and computer sciences》2004,44(2):568-574
Simulation-based fitting has been applied to data analysis and parameter determination of complex experimental systems in many areas of chemistry and biophysics. However, this method is limited because of the time costs of the calculations. In this paper it is proposed to approximate and substitute a simulation model by an artificial neural network during the fitting procedure. Such a substitution significantly speeds up the parameter determination. This approach is tested on a model of fluorescence resonance energy transfer (FRET) within a system of site-directed fluorescence labeled M13 major coat protein mutants incorporated into a lipid bilayer. It is demonstrated that in our case the application of a trained artificial neural network for the substitution of the simulation model results in a significant gain in computing time by a factor of 5 x 10(4). Moreover, an artificial neural network produces a smooth approximation of the noisy results of a stochastic simulation. 相似文献
5.
Shih AY Arkhipov A Freddolino PL Sligar SG Schulten K 《The journal of physical chemistry. B》2007,111(38):11095-11104
The self-assembly of reconstituted discoidal high-density lipoproteins, known as nanodiscs, was studied using coarse-grained molecular dynamics and small-angle X-ray scattering. In humans, high-density lipoprotein particles transport cholesterol in the blood and facilitate the removal of excess cholesterol from the body. Native high-density lipoprotein exhibits a wide variety of shapes and sizes, forming lipid-free/poor, nascent discoidal, and mature spherical particles. Little is known about how these lipoprotein particles assemble and transform from one state to another. Multiple 10 micros coarse-grained simulations reveal the assembly of discoidal high-density lipoprotein particles from disordered protein-lipid complexes. Small-angle X-ray scattering patterns were calculated from the final assembled structures and compared with experimental measurements carried out for this study to verify the accuracy of the coarse-grained simulations. Results show that hydrophobic interactions assemble, within several microseconds, the amphipathic helical proteins and lipids into roughly discoidal particles, while the proteins assume a final approximate double-belt configuration on a slower time scale. 相似文献
6.
Triglycerides are a major component of many important biological entities such as lipoproteins and lipid droplets. This work focuses on two common triglycerides, tripalmitin and triolein, which have been simulated through atomistic molecular dynamics at temperatures of 310 and 350 K for 300-700 ns. In these systems, both structural and dynamical properties have been characterized, paying particular attention to understanding the packing of triglyceride molecules and their molecular conformations. Additionally, we study the liquid-to-crystalline phase transition of tripalmitin through a temperature quench from the high-temperature isotropic liquid phase to 310 K, corresponding to a polymorphic, crystalline-like phase. The transition is characterized in detail through density, average molecular shape, and, in particular, the relevant order parameter describing the transition. 相似文献
7.
Marrink SJ Risselada HJ Yefimov S Tieleman DP de Vries AH 《The journal of physical chemistry. B》2007,111(27):7812-7824
We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To reproduce the free energies of these chemical building blocks, the number of possible interaction levels of the coarse-grained sites has increased compared to those of the previous model. Application of the new model to lipid bilayers shows an improved behavior in terms of the stress profile across the bilayer and the tendency to form pores. An extension of the force field now also allows the simulation of planar (ring) compounds, including sterols. Application to a bilayer/cholesterol system at various concentrations shows the typical cholesterol condensation effect similar to that observed in all atom representations. 相似文献
8.
A new method was developed for the coating of fused-silica capillaries with human high-density lipoproteins (HDLs) for use in electrochromatography. The HDL particles used for the coating differed in particle shape and composition. Both discoidal and spherical particles formed a monolayer on the inner silica wall as confirmed by atomic force microscopy. The effect of coating conditions, such as HDL concentration and coating time, was investigated with spherical HDL particles. Examination of the influence of pH on the coating stability also allowed the determination of pI values for the HDL particles attached to the capillary wall. The pI values for spherical and discoidal HDL particles were close to 5.0. The repeatabilities of the EOF mobility and the retention factors of the uncharged steroid hormones used as model compounds were exploited in the evaluation of the coating stability. The optimal coating was achieved with 0.1 mg/mL HDL protein and 50 min flushing with coating solution followed by 15 min standing time. Electrochromatography with HDL-coated open tubular capillaries offers a new tool for the study of HDL particle structure and transformations. 相似文献
9.
The phase diagram for a system of model anisotropic particles with six attractive patches in an octahedral arrangement has been computed. This model for a relatively narrow value of the patch width where the lowest-energy configuration of the system is a simple cubic crystal. At this value of the patch width, there is no stable vapor-liquid phase separation, and there are three other crystalline phases in addition to the simple cubic crystal that is most stable at low pressure. First, at moderate pressures, it is more favorable to form a body-centered-cubic crystal, which can be viewed as two interpenetrating, and almost noninteracting, simple cubic lattices. Second, at high pressures and low temperatures, an orientationally ordered face-centered-cubic structure becomes favorable. Finally, at high temperatures a face-centered-cubic plastic crystal is the most stable solid phase. 相似文献
10.
Peula-García JM Molina-Bolivar JA Velasco J Rojas A Galisteo-González F 《Journal of colloid and interface science》2002,245(2):230-236
The latex agglutination immunoassay technique uses polymer colloids as carriers for antibodies or antigens to enhance the immunological reaction. In this work, the interaction of a lipopolysaccharide (LPS) of Brucella Melitensis with two conventional latexes has been studied. Some experiments on the physical adsorption of the LPS onto these polystyrene beads have been performed and several complexes with different coverage degrees were obtained by modifying the incubation conditions. Regarding the application in the development of diagnostic test systems, it is advisable to study the latex-LPS complexes from an electrokinetic and colloidal stability point of view. The complexes were electrokinetically characterized by measuring the electrophoretic mobility under different redispersion conditions. The colloidal stability was determined by simple turbidity measurements. Experimental and theoretical data have been employed to study the molecular disposition of the LPS in the latex particle surface to compare with the outer membrane of bacterial cells. Latex complexes covered by different LPS amounts showed high colloidal stability and adequate immunoreactivity that remains for a long time period. 相似文献
11.
Georgios G. Vogiatzis Evangelos Voyiatzis Doros N. Theodorou 《European Polymer Journal》2011,(4):699-712
The structure of a polystyrene matrix filled with tightly cross-linked polystyrene nanoparticles, forming an athermal nanocomposite system, is investigated by means of a Monte Carlo sampling formalism. The polymer chains are represented as random walks and the system is described through a coarse grained Hamiltonian. This approach is related to self-consistent-field theory but does not invoke a saddle point approximation and is suitable for treating large three-dimensional systems. The local structure of the polymer matrix in the vicinity of the nanoparticles is found to be different in many ways from that of the corresponding bulk, both at the segment and the chain level. The local polymer density profile near to the particle displays a maximum and the bonds develop considerable orientation parallel to the nanoparticle surface. The depletion layer thickness is also analyzed. The chains orient with their longest dimension parallel to the surface of the particles. Their intrinsic shape, as characterized by spans and principal moments of inertia, is found to be a strong function of position relative to the interface. The dispersion of many nanoparticles in the polymeric matrix leads to extension of the chains when their size is similar to the radius of the dispersed particles. 相似文献
12.
Mine E Hirose M Nagao D Kobayashi Y Konno M 《Journal of colloid and interface science》2005,291(1):162-168
A synthetic method for preparing submicrometer-sized titania particles is proposed, which is based on hydrolysis of titanium alkoxide with the use of a cosolvent and an amine catalyst for alkoxide hydrolysis. The preparation was performed with different amines of ammonia, methylamine (MA), and dimethylamine (DMA) in different solvents of ethanol/acetonitrile, ethanol/methanol, ethanol/acetone, ethanol/acetonitrile, and ethanol/formamide for 0.1-0.3 M water and 0.03 M titanium tetraisopropoxide (TTIP) at temperatures of 10-50 degrees C. The use of the ethanol/acetonitrile solvent with MA was required for preparing monodispersed, spherical particles. The number average of the titania particle sizes and their coefficient of variation were varied from 143 to 551 nm and from 5.7 to 20.6%, respectively, with reaction temperature and concentrations of water and MA. Colloidal crystals of titania particles fabricated with a sedimentation method revealed reflection peaks attributed to Bragg's diffraction. Annealing at 100-1000 degrees C led to shrinkage and crystallization of titania particles followed by an increase in the refractive index of titania particles. 相似文献
13.
We apply molecular dynamics simulations to investigate the structure formation of amphiphilic Janus particles in the bulk phase. The Janus particles are modeled as (soft) spheres composed of a hydrophilic and hydrophobic part. Their orientation is described by a vector representing an internal degree of freedom. Investigating energy fluctuations and cluster size distributions, we determine the aggregation line in a temperature-density-diagram, where the reduced temperature is an inverse measure for the anisotropic coupling. Below this aggregation line clusters of various sizes depending on density and reduced temperature are found. For low densities in the range ρ? ≤ 0.3, the cluster size distribution has a broad maximum, indicating simultaneous existence of various cluster sizes between 5 and 10. We find no hint of a condensation transition of these clustered systems. In the case of higher densities (ρ? = 0.5 and 0.6), the cluster size distribution shows an extremely narrow peak at clusters of size 13. In these icosahedrons, the particles are arranged in a closed-packed manner, thereby maximizing the number of bonds. Analyzing the translational mean-square displacement we also observe indications of hindered diffusion due to aggregation. 相似文献
14.
A. V. Markov 《Polymer Science Series A》2008,50(4):471-479
A method for calculating the thermal conductivity coefficient in polymers filled with dispersed particles is proposed. This model is based on estimation of the mean width of a polymer layer between the particles that are randomly distributed in space. This model makes it possible to allow for the effect of particle dimensions, interaction between components, and their characteristics in the course of processing via extrusion. 相似文献
15.
16.
Zhang ZhiFeng Zhu HongLi Tang YiTong Cui Ting Geng TingTing Chen Chao Cui YaLi 《中国科学B辑(英文版)》2007,50(1):127-134
Two kinds of streptavidin magnetic particles,namely streptavidin GoldMag particles and streptavidin amino terminal particles were prepared by the methods of physical adsorption and covalent interaction respectively.The streptavidin coated on magnetic particle surface,crucial to many applications,was greatly influenced by the choice of the different buffer.Compared with DynalbeadsM-270 streptavidin, the binding capacity for biotin of different streptavidin magnetic particles was determined by enzyme inhibition method,and the coupling capacity and activity of biotinylated oligonucleotide on their sur- face were also analyzed.The results indicated that the streptavidin GoldMag particle prepared by physical adsorption was stable in STE(NaCl-Tris-EDTA)buffer that was frequently used in nucleic acid hybridization and detection.The streptavidin amino terminal particles prepared by covalent interaction could be used both in STE buffer and PBS(phosphate buffered saline)buffer.The biotin binding ca- pacity for 1 mg of streptavidin GoldMag particles and streptavidin amino terminal particles was 4950 and 5115 pmol respectively.The capacity of biotinylated oligonucleotide(24 bp)coupled on 1 mg of GoldMag and amino terminal magnetic particles was 2839 and 2978 pmol separately.These data were about 6-7 times higher than those of DynabeadsM-270 streptavidin.The hybridization results with FITC-labeled complementary probe on magnetic particle surface demonstrated that the oligonucleotide coupled on streptavidin magnetic particles had high biological activity. 相似文献
17.
Preeyaporn Chaiyasat Yumiko Ogino Toyoko Suzuki Hideto Minami Masayoshi Okubo 《Colloid and polymer science》2008,286(2):217-223
From the viewpoint of heat storage application, encapsulation of n-hexadecane (HD) was carried out by microsuspension copolymerizations of divinylbenzene (DVB) and acrylic monomers (butyl
acrylate, BA; ethyl acrylate, EA) utilizing the self-assembling of phase-separated polymer (SaPSeP) method proposed by the
authors. The heat of solidification (H
s) of encapsulated HD in the micron-sized, cross-linked particles was determined by the differential scanning calorimeter (DSC).
H
s of the encapsulated HD in poly(DVB) particles was much lower than that of pure HD, but it was increased with BA or EA content
copolymerized up to that of pure HD. Such an influence of encapsulation on the H
s was discussed.
Part CCIIIC of the series “Studies on suspension and emulsion”. 相似文献
18.
Polymer crystallization: Simulation with entropic barrier model and application to specific polymers
Gerhard Goldbeck-Wood 《Macromolecular Symposia》1994,81(1):221-234
The growth of polymer single crystals has been simulated on the basis of a simple two-dimensional ‘entropic barrier’ model. The chain is described by a sequence of growth units. Their additions and removals are determined by rate constants obeying detailed balance. The crystallization is then simulated by a kinetic Monte Carlo algorithm. An application of the model to specific crystallizable polymers (polyethylene, isotactic polystyrene, isotactic polypropylene, polyhydroxybuterate and polypivalolactone) is presented. Input parameter values for the model are derived from the respective surface free energies, bulk enthalpies, melting points and crystallographic repeat lengths. The only free parameter is the length of a polymer growth unit. This is set to half the lamellar crystal thickness at large undercooling. The lamellar thicknesses calculated on this basis are in good agreement with experimental data. An analysis of the growth unit lengths of the different polymers indicates a scaling with the chain persistence length in the melt. 相似文献
19.
Hand's method is typically used to empirically calculate the equilibrium compositions for ternary systems between two liquid phases. Oil field application of Hand's method is generally limited to surfactant phase behavior with oil and brine, primarily because the excess oil and brine phases are nearly immiscible. Hand's method is not accurate to represent liquid–vapor equilibrium, especially as oil and gas become miscible. It also requires iterations, which means there is no guarantee of convergence. 相似文献
20.
A shell model of an assembly of N equicharged particles subject to an arbitrary radial confining potential N W(r), where W(r) is parameterized in terms of an auxiliary function Λ(t), is presented. The validity of the model requires that Λ(t) is strictly increasing and concave for any t ∈ (0, 1), Λ'(0) is infinite, and Λ(t) = -t(-1) Λ'(t)/Λ'(t) is finite at t = 0. At the bulk limit of N → ∞, the model is found to correctly reproduce the energy per particle pair and the mean crystal radius R(N), which are given by simple functionals of Λ(t) and Λ'(t), respectively. Explicit expressions for an upper bound to the cohesive energy and the large-N asymptotics of R(N) are obtained for the first time. In addition, variational formulation of the cohesive energy functional leads to a closed-form asymptotic expression for the shell occupancies. All these formulae involve the constant ξ that enters the expression -(ξ/2) n(3/2) for the leading angular-correlation correction to the minimum energy of n electrons on the surface of a sphere with a unit radius (the solution of the Thomson problem). The approximate energies, which constitute rigorous upper bounds to their exact counterparts for any value of N, include the cohesive term that is not accounted for by the mean-field (fluidlike) theory and its simple extensions but completely neglect the surface-energy correction proportional to N. 相似文献