首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrooxidation of methanol on Ru surfaces was investigated using in situ surface-enhanced Raman spectroscopy. Although the cyclic voltammogram did not show a significant methanol oxidation current on Ru, a Raman band at approximately 1970-1992 cm(-1) was observed from 0.4 to 0.8 V in 0.1 M HClO(4) + 1 M methanol. By comparing with the C-O stretching band (nu(CO)) of carbon monoxide (CO) adsorbed on RuO(2)(110) in the ultrahigh vacuum and on oxidized Ru electrodes, the observed spectral feature is assigned to nu(CO) of adsorbed CO (CO(ads)) on RuO(2). The formation of CO(ads) suggests that methanol oxidation does occur on Ru at room temperature, which is in contrast to the perception that Ru is not active for the reaction. The lack of significant methanol oxidation current is attributed to the competing rapid surface oxidation, which forms inactive surface oxides and therefore inhibits the methanol oxidation.  相似文献   

2.
Temporal evolution of the Raman spectra of H2O, D2O and HDO during an oxidation-reduction cycle of a Ag electrode in aqueous 1 M KCl or KBr has been recorded with an optical multichannel analyzer. Surface enhanced Raman spectra of the adsorbed water are readily observable and are different from the Raman spectra of bulk water.  相似文献   

3.
Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging.  相似文献   

4.
《Chemical physics letters》2002,350(3-4):440-446
Surface-enhanced Raman scattering (SERS) spectra of pyridine adsorbed onto bare platinum and nickel electrodes in nonaqueous solutions are reported in this Letter. There are similarities and differences between the SERS from aqueous and nonaqueous solutions. The surface enhancement factor for platinum in acetonitrile solution has been calculated to decrease by a factor of ca. 10 compared with that in the aqueous media. The double-band character for the ring breathing mode is observed at 1009 and 1019 cm−1. Two adsorption modes of pyridine on the platinum surface were assumed. Part of the pyridine molecules may be chemisorbed onto the surface, with the ring plane oriented vertical to the surface; other pyridine molecules may co-adsorb with lithium cations onto the surface.  相似文献   

5.
Surface-enhanced Raman scattering on colloidal nanostructures   总被引:1,自引:0,他引:1  
Surface-enhanced Raman scattering combines extremely high sensitivity, due to enhanced Raman cross-sections comparable or even better than fluorescence, with the observation of vibrational spectra of adsorbed species, providing one of the most incisive analytical methods for chemical and biochemical detection and analysis. SERS spectra are observed from a molecule-nanostructure enhancing system. This symbiosis molecule-nanostructure is a fertile ground for theoretical developments and a realm of applications from single molecule detection to biomedical diagnostic and techniques for nanostructure characterization.  相似文献   

6.
We obtained the high-quality Raman spectra of 4-mercaptopyridine (4-Mpy) adsorbed on CdS microclusters. The Raman signals were enhanced relative to the same molecules in solution. We compared the Raman spectra of 4-Mpy molecules adsorbed on CdS microclusters and Ag substrate. The difference of 4-Mpy molecules adsorbed on semiconductor and metal substrate was revealed. The results demonstrated that adsorbed species on semiconductor CdS can be detected by SERS spectroscopy.  相似文献   

7.
Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.  相似文献   

8.
The ability of surface-enhanced Raman spectroscopy (SERS) to measure 5-fluorouracil (5-FU) in saliva is presented. The approach is based on the capacity of Raman spectroscopy to provide a unique spectral signature for virtually every chemical, and the ability of SERS to provide microg/mL sensitivity. A simple sampling method, that employed 1-mm glass capillaries filled with silver-doped sol-gels, was developed to isolate 5-FU from potential interfering chemical components of saliva and simultaneously provide SERSactivity. The method involved treating a 1 mL saliva sample with 1 mL of acetic acid, drawing 10 microL of sample into a SERS-active capillary by syringe, and then measuring the SER spectrum. Quality SER spectra were obtained for samples containing as little as 2 microg of 5-FU in 1 mL saliva. The entire process, the acid pretreatment, extraction and spectral measurement, took less than 5 minutes. The SERS of 5-fluorouridine and 5-fluoro-2'-deoxyuridine, two major metabolites of 5-FU, were also measured and shown to have unique spectral peaks. These measurements suggest that disposable SERS-active capillaries could be used to measure 5-FU and metabolite concentrations in chemotherapy patient saliva, thereby providing metabolic data that would allow regulating dosage. Tentative vibrational mode assignments for 5-FU and its metabolites are also given.  相似文献   

9.
The surface-enhanced Raman scattering (SERS) of 1-butanethiol was investigated in a silver sol. The molecule was found to be chemisorbed dissociatively on the silver surface by rupture of its SH bond. It is concluded that conformers of 1-butanethiol adsorbed selectively on the silver surface, the trans conformer around the C (1)C (2) axes being more likely adsorbed when the bulk concentration of the molecule is enough for the full monolayer coverage. The vibrational assignment of the molecule in liquid phase has also been refined by using the SERS data.  相似文献   

10.
Active surface-enhanced Raman scattering (SERS) silver nanoparticles substrate was prepared by multiple depositions of Ag nanoparticles on glass slides. The substrate is based on five depositions of Ag nanoparticles on 3-aminopropyl-trimetoxisilane (APTMS) modified glass slides, using APTMS sol–gel as linker molecules between silver layers. The SERS performance of the substrate was investigated using 4-aminobenzenethiol (4-ABT) as Raman probe molecule. The spectral analyses reveal a 4-ABT Raman signal enhancement of band intensities, which allow the detection of this compound in different solutions. The average SERS intensity decreases significantly in 4-ABT diluted solutions (from 10−4 to 10−6 mol L−1), but the compound may still be detected with high signal/noise ratio. The obtained results demonstrate that the Ag nanoparticles sensor has a great potential as SERS substrate.  相似文献   

11.
Four different sizes of citrate-protected silver nanoplates with the corresponding in-plane dipole resonance band at 530, 619, 778, and 858 nm, respectively, are synthesized for surface-enhanced Raman scattering (SERS) study. Their aggregation behaviors are monitored by use of UV-vis spectroscopy. During the aggregation process, a marked red shift of the in-plane dipole resonance of silver nanoplates is observed, whereas other resonance modes of them only have small alterations in the site or intensity. Aggregated silver nanoplates can serve as active SERS substrates with an enhancement factor of about 4.5 x 10(5) using 2-aminothiophenol as a probing molecule. The SERS performance of silver nanoplates is even superior to the commonly used Lee-Meisel silver colloid, making them very attractive for SERS applications.  相似文献   

12.
Silver nanostructured films were directly prepared by spray deposition of preformed polyol-based Ag-PVP nanoparticles. These homogeneous films of high optical quality were tested as SERS-active substrates. Laser excitation at 514.5 nm within the red part of the plasmon band leads to intense and reproducible SERS spectra of acridine, used as the probe molecule. From SERS measurements at different pH values, it was possible to determine the apparent pK(a) of acridine and to obtain specific surface properties of the film. Finally, these SERS titrations along with enhancement factor estimates allowed us to further depict the nature of the films.  相似文献   

13.
Fabrication, characterization, and optical enhancement applications of bimetallic AgAu nanoparticles and nanoshells are reported. Nanoparticles with tunable surface plasmon resonances are synthesized at room temperature and characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and photon correlation spectroscopy. The collective electron oscillation of the nanoparticles shows a controllable tunability in the 400-990 nm spectral range, in agreement with plasmon absorption calculated using Mie theory, providing an optimum substrate for surface plasmon-assisted enhanced spectroscopy. Surface-enhanced Raman scattering experiments show that the average enhancement factor obtained with nanoshells could be higher than those obtained with silver sols.  相似文献   

14.
Han MJ  Hao J  Xu Z  Meng X 《Analytica chimica acta》2011,692(1-2):96-102
Surface-enhanced Raman scattering (SERS) has recently emerged as a promising method for chemical and biomolecular sensing. SERS quantification analysis of arsenate (As(V)) was investigated using multilayer Ag nanofilms deposited on glass slides as SERS-active substrates (Ag/GL substrates) by an electroless deposition process. The As(V) limit of detection (LOD) was determined to be ~5 μg L(-1) or lower with or without coexisting multiple background electrolytes (Na(+), K(+), Ca(2+), Mg(2+), Cl(-), NO(3)(-), SO(4)(2-) and H(2)PO(4)(-)). The presence of the background electrolytes at low concentrations was observed to enhance the SERS sensitivity of the substrate towards As(V) more than twofold. Standard calibration curves were prepared in the absence and presence of the background electrolytes. Excellent linear relationships between the peak heights of the As(V) SERS band at ~780 cm(-1) and the As(V) concentrations were obtained in a concentration range of 0-250 μg L(-1). The selectivity of the Ag nanofilm towards oxyanions was examined to be in the order of As(V)?phosphate?nitrate, sulphate. A low sample-to-sample relative standard deviation (RSD) of 5.2% was also determined, suggesting the Ag/GL substrate was uniform and highly reproducible. Experimental results indicated that the SERS method could be used for quantitative analysis of As(V) in groundwater samples.  相似文献   

15.
Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and biomedical research. Raman spectroscopy can be revolutionized when the inelastic scattering process takes place in the very close vicinity of metal nanostructures. Under these conditions, strongly increased Raman signals can be obtained due to resonances between optical fields and the collective oscillations of the free electrons in the metal. This effect of surface-enhanced Raman scattering (SERS) allows us to push vibrational spectroscopy to new limits in detection sensitivity, lateral resolution, and molecular structural selectivity. This opens up exciting perspectives also in molecular biospectroscopy. This article highlights three directions where SERS can offer interesting new capabilities. This includes SERS as a technique for detecting and tracking a single molecule, a SERS-based nanosensor for probing the chemical composition and the pH value in a live cell, and the effect of so-called surface-enhanced Raman optical activity, which provides information on the chiral organization of molecules on surfaces.  相似文献   

16.
Surface-enhanced Raman scattering (SERS) spectra of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and its monomer 3,4-ethylenedioxythiophene (EDOT) on Ag and Au nanoparticles presenting different morphologies and stabilizing agents have been obtained using the excitation radiation at 633 nm. The SERS spectra of the monomer and polymer are strongly dependent both on the metal and capping agent of the substrate. SERS spectra of EDOT on Au nanospheres indicates that adsorption occurs with the thiophene ring perpendicular to the metal surface. In contrast, polymerization takes place on the silver surface of Ag nanospheres. EDOT adsorption on Ag nanoprisms with polyvinylpyrrolidone (PVP) as capping agent occurs similarly to that observed on gold. Surface-enhanced resonance Raman scattering (SERRS) spectra of PEDOT on gold nanostars that present a thick layer of PVP show no chemical interaction of PEDOT with the metal surface; however, when PEDOT is adsorbed on citrate stabilized gold nanospheres, the SERRS spectra suggest that thiophene rings are perpendicular to the surface. Oxidation of PEDOT also is observed on Ag nanospheres. The investigation of the interface between PEDOT and metal surface is crucial for the development in polymer-based optoelectronic devices since this interface plays a crucial role in their stability and performance.  相似文献   

17.
The surface-enhanced Raman scattering (SERS) of 4,4'-dimercaptoazobenzene (4,4'-DMAB), an alpha, omega-dithiol possessing also an azo moiety, has seen a surge of interest recently, since 4,4'-DMAB might be able to form from 4-aminobenzenethiol (4-ABT) via a surface-induced photoreaction. An understanding of the intrinsic SERS characteristics of 4,4'-DMAB is thus very important to evaluate the possibility of such a photoreaction. We found in this work that 4,4'-DMAB should adsorb on a flame-annealed Au substrate via one of its two thiol groups such that Au nanoparticles could adsorb further on the pendent thiol group, forming a SERS hot site. The most distinctive feature in the SERS of 4,4'-DMAB was the appearance of a(g) bands, which were quite similar to the b(2)-type bands occurring in the SERS of 4-ABT. In an electrochemical environment, the a(g) bands of 4,4'-DMAB at 1431, 1387, and 1138 cm(-1) became weakened at lower potentials, completely disappearing at -1.0 V, but the bands were restored upon increasing the electrode potential, implying that neither electro- nor photo-chemical reaction to break the azo group took place, in agreement with data from a cyclic voltammogram. The appearance and disappearance of these a(g) bands are thus concluded to be associated with the charge transfer phenomenon: 4,4'-DMAB must then be one of a unique group of compounds exhibiting chemical enhancement when subjected to a SERS environment.  相似文献   

18.
In this work, surface-enhanced Raman spectroscopy (SERS), infrared adsorption (IR), normal Raman (NR) scattering as well as density functional theory (DFT) computational methods have been employed to investigate the adsorption and orientation of morphine on silver surface. The structure of morphine and its vibrational spectra were determined at B3LYP/6-31G(d) level, and the results were used in the assignment of the vibrational spectra. The calculated data showed fairly good agreement with both corresponding experimentally observed spectra. These results, along with the application of surface selection rules of SERS, suggest that the molecules had a charge transfer adsorption on Ag island film and both planes of its ‘T’ type structure had a rather perpendicular orientation to the substrate mainly via the lone-pair electrons of the oxygens.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) has great potential as an analytical technique based on the unique molecular signatures presented even by structurally similar analyte species and the minimal interference of scattering from water when sampling in aqueous environments. Unfortunately, analytical SERS applications have been restricted on the basis of limitations in substrate design. Herein, we present a simple SERS substrate that exploits electroless deposition onto a nanoparticle-seeded polymer scaffold that can be fabricated quickly and without specialized equipment. The polymer-templated nanostructures have stable enhancement factors that are comparable to the traditional silver film over nanospheres (AgFON) substrate, broad localized surface plasmon resonance spectra that allow various Raman excitation wavelengths to be utilized, and tolerance for both aqueous and organic environments, even after 5 day exposure. These polymer-templated nanostructures have an advantage over the AgFON substrate based on the ease of fabrication; specifically, the ability to generate fresh SERS substrates outside the laboratory environment will facilitate the application of SERS to new analytical spectroscopy applications.  相似文献   

20.
The enhanced fluorescence and enhanced Raman spectra of dye-1555 molecules adsorbed on silver chloride sols are detected for the first time. The enhanced fluorescence is attributed to the double resonance effect proposed by Chew and Wang. The enhanced Raman spectra indirectly support the energy-transfer model of spectral sensitization of dyes, one of two competing mechanisms of spectral sensitization in the photographic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号